847 research outputs found
Dry impregnation in fluidized bed: Drying and calcination effect on nanoparticles dispersion and location in a porous support
The synthesis of metal nanoparticles dispersed inside the grains of a porous inorganic support was carried out by ‘‘dry impregnation’’ in a fluidized bed. The principle of this technique consists in the spraying of a solution containing a metal source into a hot fluidized bed of porous particles. The metal source can be of different nature such as metal salts, organometallic precursors or colloidal solutions. The experimental results obtained from iron oxide deposition on a porous silica gel as support, constitute the core of this article but others results concerning the deposition of rhodium from a colloidal suspension containing preformed rhodium nanoparticles are also described. More precisely, this study aims to understand the effect of the bed temperature during the impregnation step, the initial particle porosity and the calcination operating protocol on the metallic nanoparticles dispersion and location in the silica porous particles. The so-obtained products were characterized by various techniques in order to determine their morphology, their surface properties and the dispersion of the nanoparticles inside the support. The results showed that, under the chosen operating conditions, the deposit efficiency is close to 100% and the competition between the drying rate, depending on the process-related variables, and the capillary penetration rate, depending on the physicochemical-related variables, controls the deposit location. A quasi uniform deposit inside the support particles is observed for soft drying. The metal nanoparticles size is controlled by the pore mean diameter of the support as well as the calcination operating protocol
Rhodium colloidal suspension deposition on porous silica particles by dry impregnation: Study of the influence of the reaction conditions on nanoparticles location and dispersion and catalytic reactivity
Rhodium composite nanomaterials were synthesized by an innovating process called dry impregnation in a fluidized bed. It consists in spraying an aqueous colloidal suspension of rhodium on silica porous particles. The use of this precursor solution containing preformed nanoparticles avoids calcination/activation step. Different composite nanomaterials were prepared displaying various metal loadings. The operating conditions were tuned to modify τs, the solvent vapour saturation rate value, in order to influence the deposit location: either uniform on the whole silica particles or at the particles surface like a coating. τs is defined as the ratio between solvent content in the bed atmosphere and the maximum solvent content. The obtained samples were investigated in catalytic hydrogenation of aromatic compounds under very mild conditions. Their catalytic performances were compared to those of the original colloidal suspension in one hand and of a similar catalyst prepared through wet impregnation in another hand. Interesting activity and selectivity were observed.This illustrates the interest of the dry impregnation method: this way allows an easy control of the metal loading as well as of the metal loading location in the support particles. Moreover, the support particle size and morphology are preserved
Synthesis of Supported Catalysts by Dry Impregnation in Fluidized Bed
The synthesis of catalytic or not composite materials by dry impregnation in fluidized bed is described. This process can be carried out under mild conditions from solutions of organometallic precursors or colloidal solutions of preformed nanoparticles giving rise to reproducible metallic nanoparticles containing composite materials with a high reproducibility. The adequate choice of the reaction conditions makes possible to deposit uniformly the metal precursor within the porous matrix or on the support surface. When the ratio between the drying time and the capillary penetration time (tsec/tcap) is higher than 10, the impregnation under soft drying conditions leads to a homogeneous deposit inside the pores of the particles of support. The efficiency of the metal deposition is close to 100%, and the size of the formed metal nanoparticles is controlled by the pores diameter. Finally, some of the presented composite materials have been tested as catalysts: iron-based materials were used in carbon-nanotubes synthesis, while Pd and Rh composite materials have been investigated in hydrogenation reactions
Model arenes hydrogenation with silica-supported rhodium nanoparticles:The role of the silica grains and of the solvent on catalytic activities
Silica-supported rhodium-based nanoheterogeneous catalysts were easily prepared by impregnation with a pre-stabilized colloidal suspension. The resulting catalysts contain rhodium nanoparticles well-dispersed in the silica pores with a mean size of 5 nm. Influence of the silica grains size and of the solvent was investigated in arenes hydrogenation. It appeared that the size of the silica grains has a minimal influence on the reaction rate but the supported nanocatalysts displayed higher TOFs in hexane than in water
Magnetoresistance and collective Coulomb blockade in super-lattices of ferromagnetic CoFe nanoparticles
We report on transport properties of millimetric super-lattices of CoFe
nanoparticles surrounded by organic ligands. R(T)s follow R(T) =
R_0.exp(T/T_0)^0.5 with T_0 ranging from 13 to 256 K. At low temperature I(V)s
follow I=K[(V-V_T)/V_T]^ksi with ksi ranging 3.5 to 5.2. I(V) superpose on a
universal curve when shifted by a voltage proportional to the temperature.
Between 1.8 and 10 K a high-field magnetoresistance with large amplitude and a
strong voltage-dependence is observed. Its amplitude only depends on the
magnetic field/temperature ratio. Its origin is attributed to the presence of
paramagnetic states present at the surface or between the nanoparticles. Below
1.8 K, this high-field magnetoresistance abruptly disappears and inverse
tunnelling magnetoresistance is observed, the amplitude of which does not
exceed 1%. At this low temperature, some samples display in their I(V)
characteristics abrupt and hysteretic transitions between the Coulomb blockade
regime and the conductive regime. The increase of the current during these
transitions can be as high as a factor 30. The electrical noise increases when
the sample is near the transition. The application of a magnetic field
decreases the voltage at which these transitions occur so magnetic-field
induced transitions are also observed. Depending on the applied voltage, the
temperature and the amplitude of the magnetic field, the magnetic-field induced
transitions are either reversible or irreversible. These abrupt and hysteretic
transitions are also observed in resistance-temperature measurements. They
could be the soliton avalanches predicted by Sverdlov et al. [Phys. Rev. B 64,
041302 (R), 2001] or could also be interpreted as a true phase transition
between a Coulomb glass phase to a liquid phase of electrons
Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles
The influence of a transverse static magnetic field on the magnetic
hyperthermia properties is studied on a system of large-losses ferromagnetic
FeCo nanoparticles. The simultaneous measurement of the high-frequency
hysteresis loops and of the temperature rise provides an interesting insight
into the losses and heating mechanisms. A static magnetic field of only 40 mT
is enough to cancel the heating properties of the nanoparticles, a result
reproduced using numerical simulations of hysteresis loops. These results cast
doubt on the possibility to perform someday magnetic hyperthermia inside a
magnetic resonance imaging setup.Comment: 6 pages, 3 figure
Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime
We report on the magnetic and hyperthermia properties of iron nanoparticles
synthesized by organometallic chemistry. They are 5.5 nm in diameter and
display a saturation magnetization close to the bulk one. Magnetic properties
are dominated by the contribution of aggregates of nanoparticles with respect
to individual isolated nanoparticles. Alternative susceptibility measurements
are been performed on a low interacting system obtained after eliminating the
aggregates by centrifugation. A quantitative analysis using the Gittleman s
model allow a determination of the effective anisotropy Keff = 1.3 * 10^5
J.m^{-3}, more than two times the magnetocristalline value of bulk iron.
Hyperthermia measurements are performed on agglomerates of nanoparticles at a
magnetic field up to 66 mT and at frequencies in the range 5-300 kHz. Maximum
measured SAR is 280 W/g at 300 kHz and 66 mT. Specific absorption rate (SAR)
displays a square dependence with the magnetic field below 30 mT but deviates
from this power law at higher value. SAR is linear with the applied frequency
for mu_0H=19 mT. The deviations from the linear response theory are discussed.
A refined estimation of the optimal size of iron nanoparticles for hyperthermia
applications is provided using the determined effective anisotropy value
Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behaviour and large losses
We report on hyperthermia measurements on a colloidal solution of 15 nm
monodisperse FeCo nanoparticles (NPs). Losses as a function of the magnetic
field display a sharp increase followed by a plateau, which is what is expected
for losses of ferromagnetic single-domain NPs. The frequency dependence of the
coercive field is deduced from hyperthermia measurement and is in quantitative
agreement with a simple model of non-interacting NPs. The measured losses (1.5
mJ/g) compare to the highest of the literature, though the saturation
magnetization of the NPs is well below the bulk one.Comment: 14 pages, 3 figure
- …