3,238 research outputs found

    Anomalous structural and mechanical properties of solids confined in quasi one dimensional strips

    Get PDF
    We show using computer simulations and mean field theory that a system of particles in two dimensions, when confined laterally by a pair of parallel hard walls within a quasi one dimensional channel, possesses several anomalous structural and mechanical properties not observed in the bulk. Depending on the density ρ\rho and the distance between the walls LyL_y, the system shows structural characteristics analogous to a weakly modulated liquid, a strongly modulated smectic, a triangular solid or a buckled phase. At fixed ρ\rho, a change in LyL_y leads to many reentrant discontinuous transitions involving changes in the number of layers parallel to the confining walls depending crucially on the commensurability of inter-layer spacing with LyL_y. The solid shows resistance to elongation but not to shear. When strained beyond the elastic limit it fails undergoing plastic deformation but surprisingly, as the strain is reversed, the material recovers completely and returns to its original undeformed state. We obtain the phase diagram from mean field theory and finite size simulations and discuss the effect of fluctuations.Comment: 14 pages, 13 figures; revised version, accepted in J. Chem. Phy

    Effect of strain on the transport properties of the manganite systems

    Full text link
    The effect of strain on the resistivity and thermopower of ferromagnetic manganites has been examined based on the model that incorporates the electron-lattice interaction through the Jahn-Teller effect and an effective hopping determined by nearest neighbour spin-spin correlation of t2g electrons. The metal insulator transition temperature associated with resistivity decreases with increase in strain. In the presence of large strain the system remains in the semiconducting state. Thermopower (S) is positive and increasing function of strain and it exhibits a maximum with temperature. The temperature where maximum of S appears, shifts towards higher (lower) value with in the presence of magnetic field (strain). A large magneto-thermopower that depends on strain is obtained around metal-insulator transition.Comment: 11pages, 4 figure

    Relaxation dynamics in a transient network fluid with competing gel and glass phases

    Full text link
    We use computer simulations to study the relaxation dynamics of a model for oil-in-water microemulsion droplets linked with telechelic polymers. This system exhibits both gel and glass phases and we show that the competition between these two arrest mechanisms can result in a complex, three-step decay of the time correlation functions, controlled by two different localization lengthscales. For certain combinations of the parameters, this competition gives rise to an anomalous logarithmic decay of the correlation functions and a subdiffusive particle motion, which can be understood as a simple crossover effect between the two relaxation processes. We establish a simple criterion for this logarithmic decay to be observed. We also find a further logarithmically slow relaxation related to the relaxation of floppy clusters of particles in a crowded environment, in agreement with recent findings in other models for dense chemical gels. Finally, we characterize how the competition of gel and glass arrest mechanisms affects the dynamical heterogeneities and show that for certain combination of parameters these heterogeneities can be unusually large. By measuring the four-point dynamical susceptibility, we probe the cooperativity of the motion and find that with increasing coupling this cooperativity shows a maximum before it decreases again, indicating the change in the nature of the relaxation dynamics. Our results suggest that compressing gels to large densities produces novel arrested phases that have a new and complex dynamics.Comment: 16 pages, 15 figure

    Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates

    Get PDF
    A new type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The sys- tem did not crystallize and may be characterized as disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe pat- terns. The in-plane and inter-plane particle separations exhibit nonmonotonic dependence on the discharge pressure which agrees well with theoretical predictions

    When gel and glass meet: A mechanism for multistep relaxation

    Full text link
    We use computer simulations to study the dynamics of a physical gel at high densities where gelation and the glass transition interfere. We report and provide detailed physical understanding of complex relaxation patterns for time correlation functions which generically decay in a three-step process. For certain combinations of parameters we find logarithmic decays of the correlators and subdiffusive particle motion.Comment: 4 pages, 5 figure

    A semidefinite relaxation procedure for fault-tolerant observer design

    Get PDF
    A fault-tolerant observer design methodology is proposed. The aim is to guarantee a minimum level of closed-loop performance under all possible sensor fault combinations while optimizing performance under the nominal, fault-free condition. A novel approach is proposed to tackle the combinatorial nature of the problem, which is computationally intractable even for a moderate number of sensors, by recasting the problem as a robust performance problem, where the uncertainty set is composed of all combinations of a set of binary variables. A procedure based on an elimination lemma and an extension of a semidefinite relaxation procedure for binary variables is then used to derive sufficient conditions (necessary and sufficient in the case of one binary variable) for the solution of the problem which significantly reduces the number of matrix inequalities needed to solve the problem. The procedure is illustrated by considering a fault-tolerant observer switching scheme in which the observer outputs track the actual sensor fault condition. A numerical example from an electric power application is presented to illustrate the effectiveness of the design

    Ray optics in flux avalanche propagation in superconducting films

    Get PDF
    Experimental evidence of wave properties of dendritic flux avalanches in superconducting films is reported. Using magneto-optical imaging the propagation of dendrites across boundaries between a bare NbN film and areas coated by a Cu-layer was visualized, and it was found that the propagation is refracted in full quantitative agreement with Snell's law. For the studied film of 170 nm thickness and a 0.9 mkm thick metal layer, the refractive index was close to n=1.4. The origin of the refraction is believed to be caused by the dendrites propagating as an electromagnetic shock wave, similar to damped modes considered previously for normal metals. The analogy is justified by the large dissipation during the avalanches raising the local temperature significantly. Additional time-resolved measurements of voltage pulses generated by segments of the dendrites traversing an electrode confirm the consistency of the adapted physical picture.Comment: 4 pages, 4 figure
    corecore