10 research outputs found

    Genetic diversity and multiplicity of infection in Fasciola gigantica isolates of Pakistani livestock

    Get PDF
    Fasciola spp. are responsible for over 3 billion US dollars of production loss annually in livestock and cause widespread zoonotic disease. Nevertheless, understating of the emergence and spread of the trematode species is poor. The multiplicity of F. gigantica infection and its spread is potentially influenced by multiple factors, including the abundance of suitable intermediate hosts, climatic conditions favouring the completion of the parasite's lifecycle, and translocation of infected animals, or free-living parasite stages between regions. Here we describe the development of a ‘tremabiome’ metabarcoding sequencing method to explore the numbers of F. gigantica genotypes per infection and patterns of parasite spread, based on genetic characteristics of the mitochondrial NADH dehydrogenase 1 (mt-ND-1) locus. We collected F. gigantica from three abattoirs in the Punjab and Balochistan provinces of Pakistan, and our results show a high level of genetic diversity in 20 F. gigantica populations derived from small and large ruminants consigned to slaughter in both provinces. This implies that F. gigantica can reproduce in its definitive hosts through meiosis involving cross- and self-breeding, as described in the closely related species, Fasciola hepatica. The genetic diversity between the 20 populations derived from different locations also illustrates the impact of animal movements on gene flow. Our results demonstrate the predominance of single haplotypes, consistent with a single introduction of F. gigantica infection in 85% of the hosts from which the parasite populations were derived. This is consistent with clonal reproduction in the intermediate snail hosts.[Display omitted]•To confirm the species identity of recovered Fasciola spp.•To identify the presence of single or multiple genotypes per infection (multiplicity of infection)•Demonstrate the spread of F. gigantica mt-ND-1 haplotype

    Cross Sectional Study and Risk Factors Analysis of Francisella tularensis in Soil Samples in Punjab Province of Pakistan

    Get PDF
    Tularemia is an endemic zoonotic disease in many parts of the world including Asia. A cross-sectional study was conducted to determine genome-based prevalence of Francisella tularensis (Ft) in soil, assess an association between its occurrence in soil and likely predictors i.e., macro and micro-nutrients and several categorical variables, and determine seroconversion in small and large ruminants. The study included a total of 2,280 soil samples representing 456 villages in eight districts of the Punjab Province of Pakistan followed by an analysis of serum antibodies in 707 ruminants. The genome of Ft was detected in 3.25% (n = 74, 95% CI: 2.60–4.06) of soil samples. Soluble salts (OR: 1.276, 95% CI: 1.043–1.562, p = 0.015), Ni (OR: 2.910, 95%CI: 0.795–10.644, p = 0.106), Mn (OR:0.733, 95% CI:0.565–0.951, p = 0.019), Zn (OR: 4.922, 95% CI:0.929–26.064, p = 0.061) and nutrients clustered together as PC-1 (OR: 4.76, 95% CI: 2.37–9.54, p = 0.000) and PC-3 (OR: 0.357, 95% CI: 0.640, p = 0.001) were found to have a positive association for the presence of Ft in soil. The odds of occurrence of Ft DNA in soil were higher at locations close to a water source, including canals, streams or drains, [χ2 = 6.7, OR = 1.19, 95% CI:1.05–3.09, p = 0.004] as well as places where animals were present [χ2 = 4.09, OR = 2.06, 95% CI: 1.05–4.05, p = 0.02]. The seroconversion was detected in 6.22% (n = 44, 95% CI: 4.67–8.25) of domestic animals. An occurrence of Ft over a wide geographical region indicates its expansion to enzootic range, and demonstrates the need for further investigation among potential disease reservoirs and at-risk populations, such as farmers and veterinarians

    Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features

    Get PDF
    Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms.National Institute of Neurological Diseases and Stroke (U.S.) (R01NS035129)United States. National Institutes of Health (R21TW008223)National Cancer Institute (U.S.) (R01CA157996

    Clinical use of moclobemide in Kleine-Levin syndrome

    No full text

    Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    No full text
    Three common pretreatments (mechanical, steam explosion and chemical) used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C) and thermophilic (55 °C) temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose) content and bio-hydrogen production from rice straw. The increase in incubation temperature from 37 °C to 55 °C increased the bio-hydrogen yield, and the highest experimental yield of 60.6 mL/g VSremoved was obtained under chemical pretreatment at 55 °C. The time required for maximum bio-hydrogen production was found on the basis of kinetic parameters as 36 h–47 h of incubation, which can be used as a hydraulic retention time for continuous bio-hydrogen production from rice straw. The optimum pH range of bio-hydrogen production was observed to be 6.7 ± 0.1–5.8 ± 0.1 and 7.1 ± 0.1–5.8 ± 0.1 under mesophilic and thermophilic conditions, respectively. The increase in temperature was found useful for controlling the volatile fatty acids (VFA) under mechanical and steam explosion pretreatments. The comparison of pretreatment methods under the same set of experimental conditions in the present study provided a baseline for future research in order to select an appropriate pretreatment method

    Psychosocial responses to disaster: An Asian perspective

    No full text
    The psychological and psychiatric impact of great natural disasters are beginning to be understood leading to new methods of prevention, intervention and mitigation. There is limited data from the Asian continent, however, which has been the location of some of the greatest disasters of recent times. In this paper, we outline the psychosocial intervention efforts from nine Asian nations when confronted with large-scale natural catastrophic events. These include reports from situations where local services have some capacity to respond as well as those where services are destroyed or overwhelmed. From this it is possible to draw some general principles of psychosocial disaster intervention: (1) Assessment of disaster, extant service systems and incoming resources. (2) Assessment of help-seeking pathways and cultural models of illness. (3) Facilitation and support for family reunion, identification of the dead and cultural and religious practices to address death and grief. (4) Foster and bolster community group activities where possible. (5) Psychosocial training of community, aid and health workers using a train the trainer model to promote case identification, psychoeducation and intervention, with specific emphasis on vulnerable groups, especially children. (6) Promote general community psychoeducation. (7) Train medical and health staff in basic psychiatric and psychological assessment and intervention for post-traumatic stress, mood and anxiety disorders. (8) Minimise risk factors for psychiatric morbidity such as displacement and loss of gainful activity. (9) Reshape mental health systems recognising the long-term psychiatric sequelae of disaster. The collective learnt experience from Asian natural disasters may be constructively used to plan strategies to respond appropriately to the psychosocial consequences of disaster both within Asia and in the rest of the world. © 2008.Suresh Sundram...Daya Somasundaram...et al

    Schizophrenia risk conferred by rare protein-truncating variants is conserved across diverse human populations

    No full text
    Schizophrenia (SCZ) is a chronic mental illness and among the most debilitating conditions encountered in medical practice. A recent landmark SCZ study of the protein-coding regions of the genome identified a causal role for ten genes and a concentration of rare variant signals in evolutionarily constrained genes(1). This recent study-and most other large-scale human genetics studies-was mainly composed of individuals of European (EUR) ancestry, and the generalizability of the findings in non-EUR populations remains unclear. To address this gap, we designed a custom sequencing panel of 161 genes selected based on the current knowledge of SCZ genetics and sequenced a new cohort of 11,580 SCZ cases and 10,555 controls of diverse ancestries. Replicating earlier work, we found that cases carried a significantly higher burden of rare protein-truncating variants (PTVs) among evolutionarily constrained genes (odds ratio = 1.48; P = 5.4 x 10(-6)). In meta-analyses with existing datasets totaling up to 35,828 cases and 107,877 controls, this excess burden was largely consistent across five ancestral populations. Two genes (SRRM2 and AKAP11) were newly implicated as SCZ risk genes, and one gene (PCLO) was identified as shared by individuals with SCZ and those with autism. Overall, our results lend robust support to the rare allelic spectrum of the genetic architecture of SCZ being conserved across diverse human populations.Peer reviewe

    Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    No full text
    corecore