4 research outputs found

    Relationship among Apis mellifera L. stings, swarming and climate conditions in the city of Rio Claro, SP, Brazil

    Full text link
    The presence of bees (Apis mellifera L.) in urban areas has increased in recent years due to environmental disturbances caused by humans. Bee migration to cities may provoke serious accidents, since some people present allergic reactions to their venoms. In Rio Claro city, São Paulo state, Brazil, the number of calls to the fire brigade for removal of bee swarms, and the number admissions in local hospitals due to bee stings were investigated during 2002 and 2003, and a correlation between these data and the average temperature, rainfall and relative humidity was found. The study period was divided into three phases according to the number of times that the fire brigade was called to remove swarms (263 times): January to July 2002 - 51 calls (19.39%); August 2002 to July 2003 - 140 calls (53.23%); and August to December 2003 - 72 calls (27.38%). A significant correlation among the number of calls, the local temperature and rainfall was detected. The number of accidents was not associated with environmental variables. Based on the current results, public activities for prevention of bee attacks may be developed to avoid unwanted contact between humans and these insects, and/or provide the appropriate management of the colonies

    Carbohydrate hydrogels with stabilized phage particles for bacterial biosensing: bacterium diffusion studies

    Get PDF
    Bacteriophage particles have been reported as potentially useful in the development of diagnosis tools for pathogenic bacteria as they specifically recognize and lyse bacterial isolates thus confirming the presence of viable cells. One of the most representative microorganisms associated with health care services is the bacterium Pseudomonas aeruginosa, which alone is responsible for nearly 15 % of all nosocomial infections. In this context, structural and functional stabilization of phage particles within biopolymeric hydrogels, aiming at producing cheap (chromogenic) bacterial biosensing devices, has been the goal of a previous research effort. For this, a detailed knowledge of the bacterial diffusion profile into the hydrogel core, where the phage particles lie, is of utmost importance. In the present research effort, the bacterial diffusion process into the biopolymeric hydrogel core was mathematically described and the theoretical simulations duly compared with experimental results, allowing determination of the effective diffusion coefficients of P. aeruginosa in the agar and calcium alginate hydrogels tested.Financial support to Victor M. Balcao, via an Invited Research Scientist fellowship (FAPESP Ref. No. 2011/51077-8) by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP, Sao Paulo, Brazil), is hereby gratefully acknowledged
    corecore