19 research outputs found

    Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field

    Get PDF
    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with, and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film.Comment: 9 pages, 7 figure

    Electromagnetically Induced Transparency with an Ensemble of Donor-Bound Electron Spins in a Semiconductor

    Get PDF
    We present measurements of electromagnetically induced transparency with an ensemble of donor- bound electrons in low-doped n-GaAs. We used optical transitions from the Zeeman-split electron spin states to a bound trion state in samples with optical densities of 0.3 and 1.0. The electron spin dephasing time T* \approx 2 ns was limited by hyperfine coupling to fluctuating nuclear spins. We also observe signatures of dynamical nuclear polarization, but find these effects to be much weaker than in experiments that use electron spin resonance and related experiments with quantum dots.Comment: 4 pages, 4 figures; Improved analysis of data in Fig. 3, corrected factors of 2 and p

    Electromagnetically induced transparency in low-doped n-GaAs

    No full text
    We report the observation of electromagnetically induced transparency (EIT) with an ensemble of donor-bound electrons in low-doped n-GaAs. We used pure GaAs layers with Si doping at very low concentration in a strong magnetic field. EIT was implemented with the two optical transitions that exist for the three-level system that is formed by the two electron spin states and a donor-bound trion state. Our results show that EIT with n-GaAs can serve as a platform for studies of nonlocal quantum entanglement with spins in semiconductors, as well as for controlling and probing dynamical nuclear polarization with coherent electron spins
    corecore