5 research outputs found

    Prospective comparison of three predictive rules for assessing severity of community‐acquired pneumonia in Hong Kong

    No full text
    Background: Community-acquired pneumonia (CAP) is a leading infectious cause of death throughout the world, including Hong Kong. Aim: To compare the ability of three validated prediction rules for CAP to predict mortality in Hong Kong: the 20 variable Pneumonia Severity Index (PSI), the 6-point CURB65 scale adopted by the British Thoracic Society and the simpler CRB65. Methods: A prospective observational study of 1016 consecutive inpatients with CAP (583 men, mean (SD) age 72 (17) years) was performed in a university hospital in the New Territories of Hong Kong in 2004. The patients were classified into three risk groups (low, intermediate and high) according to each rule. The ability of the three rules to predict 30 day mortality was compared. Results: The overall mortality and intensive care unit (ICU) admission rates were 8.6% and 4.0%, respectively. PSI, CURB65 and CRB65 performed similarly, and the areas under the receiver operating characteristic (ROC) curve were 0.736 (95% CI 0.687 to 0.736), 0.733 (95% CI 0.679 to 0.787) and 0.694 (95% CI 0.634 to 0.753), respectively. All three rules had high negative predictive values but relatively low positive predictive values at all cut-off points. Larger proportions of patients were identified as low risk by PSI (47.2%) and CURB65 (43.3%) than by CRB65 (12.6%). Conclusion: All three predictive rules have a similar performance in predicting the severity of CAP, but CURB65 is more suitable than the other two for use in the emergency department because of its simplicity of application and ability to identify low-risk patients

    Malaria Parasite Infection Compromises Control of Concurrent Systemic Non-typhoidal Salmonella Infection via IL-10-Mediated Alteration of Myeloid Cell Function

    No full text
    Non-typhoidal Salmonella serotypes (NTS) cause a self-limited gastroenteritis in immunocompetent individuals, while children with severe Plasmodium falciparum malaria can develop a life-threatening disseminated infection. This co-infection is a major source of child mortality in sub-Saharan Africa. However, the mechanisms by which malaria contributes to increased risk of NTS bacteremia are incompletely understood. Here, we report that in a mouse co-infection model, malaria parasite infection blunts inflammatory responses to NTS, leading to decreased inflammatory pathology and increased systemic bacterial colonization. Blunting of NTS-induced inflammatory responses required induction of IL-10 by the parasites. In the absence of malaria parasite infection, administration of recombinant IL-10 together with induction of anemia had an additive effect on systemic bacterial colonization. Mice that were conditionally deficient for either myeloid cell IL-10 production or myeloid cell expression of IL-10 receptor were better able to control systemic Salmonella infection, suggesting that phagocytic cells are both producers and targets of malaria parasite-induced IL-10. Thus, IL-10 produced during the immune response to malaria increases susceptibility to disseminated NTS infection by suppressing the ability of myeloid cells, most likely macrophages, to control bacterial infection

    Proteolysis in plants: mechanisms and functions

    No full text

    Small molecules in targeted cancer therapy: advances, challenges, and future perspectives

    No full text
    corecore