19 research outputs found

    The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H<sub>2</sub>S) pathway against experimental osteoarthritis.

    Get PDF
    Osteoarthritis (OA) is characterized by the formation and deposition of calcium-containing crystals in joint tissues, but the underlying mechanisms are poorly understood. The gasotransmitter hydrogen sulfide (H &lt;sub&gt;2&lt;/sub&gt; S) has been implicated in mineralization but has never been studied in OA. Here, we investigated the role of the H &lt;sub&gt;2&lt;/sub&gt; S-producing enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) in cartilage calcification and OA development. 3-MST expression was analyzed in cartilage from patients with different OA degrees, and in cartilage stimulated with hydroxyapatite (HA) crystals. The modulation of 3-MST expression in vivo was studied in the meniscectomy (MNX) model of murine OA, by comparing sham-operated to MNX knee cartilage. The role of 3-MST was investigated by quantifying joint calcification and cartilage degradation in WT and 3-MST &lt;sup&gt;-/-&lt;/sup&gt; meniscectomized knees. Chondrocyte mineralization in vitro was measured in WT and 3-MST &lt;sup&gt;-/-&lt;/sup&gt; cells. Finally, the effect of oxidative stress on 3-MST expression and chondrocyte mineralization was investigated. 3-MST expression in human cartilage negatively correlated with calcification and OA severity, and diminished upon HA stimulation. In accordance, cartilage from menisectomized OA knees revealed decreased 3-MST if compared to sham-operated healthy knees. Moreover, 3-MST &lt;sup&gt;-/-&lt;/sup&gt; mice showed exacerbated joint calcification and OA severity if compared to WT mice. In vitro, genetic or pharmacologic inhibition of 3-MST in chondrocytes resulted in enhanced mineralization and IL-6 secretion. Finally, oxidative stress decreased 3-MST expression and increased chondrocyte mineralization, maybe via induction of pro-mineralizing genes. 3-MST-generated H &lt;sub&gt;2&lt;/sub&gt; S protects against joint calcification and experimental OA. Enhancing H &lt;sub&gt;2&lt;/sub&gt; S production in chondrocytes may represent a potential disease modifier to treat OA

    Return of the Tbx5; lineage-tracing reveals ventricular cardiomyocyte-like precursors in the injured adult mammalian heart

    Get PDF
    The single curative measure for heart failure patients is a heart transplantation, which is limited due to a shortage of donors, the need for immunosuppression and economic costs. Therefore, there is an urgent unmet need for identifying cell populations capable of cardiac regeneration that we will be able to trace and monitor. Injury to the adult mammalian cardiac muscle, often leads to a heart attack through the irreversible loss of a large number of cardiomyocytes, due to an idle regenerative capability. Recent reports in zebrafish indicate that Tbx5a is a vital transcription factor for cardiomyocyte regeneration. Preclinical data underscore the cardioprotective role of Tbx5 upon heart failure. Data from our earlier murine developmental studies have identified a prominent unipotent Tbx5-expressing embryonic cardiac precursor cell population able to form cardiomyocytes, in vivo, in vitro and ex vivo. Using a developmental approach to an adult heart injury model and by employing a lineage-tracing mouse model as well as the use of single-cell RNA-seq technology, we identify a Tbx5-expressing ventricular cardiomyocyte-like precursor population, in the injured adult mammalian heart. The transcriptional profile of that precursor cell population is closer to that of neonatal than embryonic cardiomyocyte precursors. Tbx5, a cardinal cardiac development transcription factor, lies in the center of a ventricular adult precursor cell population, which seems to be affected by neurohormonal spatiotemporal cues. The identification of a Tbx5-specific cardiomyocyte precursor-like cell population, which is capable of dedifferentiating and potentially deploying a cardiomyocyte regenerative program, provides a clear target cell population for translationally-relevant heart interventional studies

    Rolle der adjuvanten Chemotherapie bei Kopf und Halstumoren

    No full text

    Modulation of poly(ADP-Ribose) polymerase-1 (PARP-1)-mediated oxidative cell injury by ring finger protein 146 (RNF146) in cardiac myocytes

    No full text
    Poly(ADP-ribose) polymerase-1 (PARP-1) activation is a hallmark of oxidative stress-induced cellular injury that can lead to energetic failure and necrotic cell death via depleting the cellular nicotinamide adenine dinucleotide (NAD+) and ATP pools. Pharmacological PARP-1 inhibition or genetic PARP-1 deficiency exert protective effects in multiple models of cardiomyocyte injury. However, the connection between nuclear PARP-1 activation and depletion of the cytoplasmic and mitochondrial energy pools is poorly understood. By using cultured rat cardiomyocytes, here we report that ring finger protein 146 (RNF146), a cytoplasmic E3-ubiquitin ligase, acts as a direct interactor of PARP-1. Overexpression of RNF146 exerts protection against oxidant-induced cell death, whereas PARP-1-mediated cellular injury is augmented after RNF146 silencing. RNF146 translocates to the nucleus upon PARP-1 activation, triggering the exit of PARP-1 from the nucleus, followed by rapid degradation of both proteins. PARP-1 and RNF146 degradation occurs in the early phase of myocardial ischemia-reperfusion injury; it precedes the induction of heat shock protein expression. Taken together, PARP-1 release from the nucleus and its rapid degradation represent newly identified steps of the necrotic cell death program induced by oxidative stress. These steps are controlled by the ubiquitin-proteasome pathway protein RNF146. The current results shed new light on the mechanism of necrotic cell death. RNF146 may represent a distinct target for experimental therapeutic intervention of oxidant-mediated cardiac injury

    Compiler transformations in hardware synthesis of Mpeg2 codes

    No full text
    High-level synthesis is the technique that translates high-level programming language programs into equivalent hardware descriptions. The use of conventional programming languages as input to high-level synthesis is challenging, due to the conceptual differences between software programs and hardware descriptions, but is nonetheless becoming the preferred input to high-level synthesis tools. Compilers play an important role in this process, since they can not only bridge such differences, thus making high-level synthesis tools better accepted by the scientific community, but they can also apply code transformations that target an optimized hardware output. In this paper, we discuss a number of transformations that can be implemented in the C language front end of the CCC high-level synthesis tool. We present experiments of such transformations conducted on the MPEG2 open-source code, which prove that compiler optimizations can have a significant positive impact in high-level synthesis tools. © 2016 IEEE

    Source-level compiler optimizations for high-level synthesis

    No full text
    With high-level synthesis becoming the preferred method for hardware design, tools that operate on high-level programming languages and optimize hardware output are crucial for successful synthesis. In high-level synthesis, conventional programming language codes describe hardware behavior. Those codes are translated into RTL-level description by some appropriate tool. Common such tools that not only translate, but also optimize code, are programming language compilers. Compilers can make the transition from software to hardware smooth, allowing programmers to use their software skills on hardware programming, without any language compromises. Nonetheless, compilers also utilize optimization techniques to obtain a better output hardware description. In this paper, we discuss compiler issues for high-level synthesis, and present the results of several compiler transformations that can be implemented on our C language compiler front end of the CCC high-level synthesis tool. The results are taken from experiments conducted on the MPEG2 open-source codes, and prove the importance of such transformations in high-level synthesis. Copyright is held by the owner/author(s)

    The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway against experimental osteoarthritis

    No full text
    Background: Osteoarthritis (OA) is characterized by the formation and deposition of calcium-containing crystals in joint tissues, but the underlying mechanisms are poorly understood. The gasotransmitter hydrogen sulfide (H2S) has been implicated in mineralization but has never been studied in OA. Here, we investigated the role of the H2S-producing enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) in cartilage calcification and OA development. Methods: 3-MST expression was analyzed in cartilage from patients with different OA degrees, and in cartilage stimulated with hydroxyapatite (HA) crystals. The modulation of 3-MST expression in vivo was studied in the meniscectomy (MNX) model of murine OA, by comparing sham-operated to MNX knee cartilage. The role of 3-MST was investigated by quantifying joint calcification and cartilage degradation in WT and 3-MST-/- meniscectomized knees. Chondrocyte mineralization in vitro was measured in WT and 3-MST-/- cells. Finally, the effect of oxidative stress on 3-MST expression and chondrocyte mineralization was investigated. Results: 3-MST expression in human cartilage negatively correlated with calcification and OA severity, and diminished upon HA stimulation. In accordance, cartilage from menisectomized OA knees revealed decreased 3-MST if compared to sham-operated healthy knees. Moreover, 3-MST-/- mice showed exacerbated joint calcification and OA severity if compared to WT mice. In vitro, genetic or pharmacologic inhibition of 3-MST in chondrocytes resulted in enhanced mineralization and IL-6 secretion. Finally, oxidative stress decreased 3-MST expression and increased chondrocyte mineralization, maybe via induction of pro-mineralizing genes. Conclusion: 3-MST-generated H2S protects against joint calcification and experimental OA. Enhancing H2S production in chondrocytes may represent a potential disease modifier to treat OA. © 2020 The Author(s)

    Hydrogen sulfide preserves endothelial nitric oxide synthase function by inhibiting proline-rich kinase 2: Implications for cardiomyocyte survival and cardioprotection

    No full text
    Hydrogen sulfide (H2S) exhibits beneficial effects in the cardiovascular system,many of which depend on nitric oxide (NO). Proline-rich tyrosine kinase 2 (PYK2), a redox-sensitive tyrosine kinase, directly phosphorylates and inhibits endothelial NO synthase (eNOS). We investigated the ability of H2S to relieve PYK2-mediated eNOS inhibition and evaluated the importance of the H2S/PYK2/eNOS axis on cardiomyocyte injury in vitro and in vivo. Exposure of H9c2 cardiomyocytes to H2O2 or pharmacologic inhibition of H2S production increased PYK2 (Y402) and eNOS (Y656) phosphorylation. These effects were blocked by treatment with Na2S or by overexpression of cystathionine γ-lyase (CSE). In addition, PYK2 overexpression reduced eNOS activity in a H2S-reversible manner. The viability of cardiomyocytes exposed to H2 O2 was reduced and declined further after the inhibition of H2S production. PYK2 downregulation, L-cysteine supplementation, or CSE overexpression alleviated the effects of H2O2 on H9c2 cardiomyocyte survival. Moreover, H2S promoted PYK2 sulfhydration and inhibited its activity. In vivo, H2S administration reduced reactive oxygen species levels, as well as PYK2 (Y402) and eNOS (Y656) phosphorylation. Pharmacologic blockade of PYK2 or inhibition of PYK2 activation by Na2S reduced myocardial infarct size in mice. Coadministration of a PYK2 inhibitor and Na2S did not result in additive effects on infarct size. We conclude that H2S relieves the inhibitory effect of PYK2 on eNOS, allowing the latter to produce greater amounts of NO, thereby affording cardioprotection. Our results unravel the existence of a novel H2S-NO interaction and identify PYK2 as a crucial target for the protective effects of H2S under conditions of oxidative stres. © 2017 by The American Society for Pharmacology and Experimental Therapeutics

    Spontaneous breathing through increased airway resistance augments elastase-induced pulmonary emphysema

    No full text
    Introduction: Resistive breathing (RB), the pathophysiologic hallmark of chronic obstructive pulmonary disease (COPD), especially during exacerbations, is associated with significant inflammation and mechanical stress on the lung. Mechanical forces are implicated in the progression of emphysema that is a major pathologic feature of COPD. We hypothesized that resistive breathing exacerbates emphysema. Methods: C57BL/6 mice were exposed to 0.75 units of pancreatic porcine elastase intra-tracheally to develop emphysema. Resistive breathing was applied by suturing a nylon band around the trachea to reduce surface area to half for the last 24 or 72 hours of a 21-day time period after elastase treatment in total. Following RB (24 or 72 hours), lung mechanics were measured and bronchoalveolar lavage (BAL) was performed. Emphysema was quantified by the mean linear intercept (Lm) and the destructive index (DI) in lung tissue sections. Results: Following 21 days of intratracheal elastase exposure, Lm and DI increased in lung tissue sections [Lm (μm), control 39.09±0.76, elastase 62.05±2.19, p=0.003 and DI, ctr 30.95 ±2.75, elastase 73.12±1.75, p&amp;lt;0.001]. RB for 72 hours further increased Lm by 64% and DI by 19%, compared to elastase alone (p&amp;lt;0.001 and p=0.02, respectively). RB induced BAL neutrophilia in elastase-treated mice. Static compliance (Cst) increased in elastase-treated mice [Cst (mL/cmH2O), control 0.067±0.001, elastase 0.109±0.006, p&amp;lt;0.001], but super-imposed RB decreased Cst, compared to elastase alone [Cst (mL/cmH2O), elastase+RB24h 0.090±0.004, p=0.006 to elastase, elastase+RB72h 0.090±0.005, p=0.006 to elastase]. Conclusion: Resistive breathing augments pulmonary inflammation and emphysema in an elastase-induced emphysema mouse model. © 2020 Toumpanakis et al
    corecore