973 research outputs found

    Hyperglycemia Has a Greater Impact on Left Ventricle Function in South Asians Than in Europeans

    Get PDF
    OBJECTIVE Diabetes is associated with left ventricular (LV) diastolic and systolic dysfunction. South Asians may be at particular risk of developing LV dysfunction owing to a high prevalence of diabetes. We investigated the role of diabetes and hyperglycemia in LV dysfunction in a community-based cohort of older South Asians and white Europeans. RESEARCH DESIGN AND METHODS Conventional and Doppler echocardiography was performed in 999 participants (542 Europeans and 457 South Asians aged 58–86 years) in a population-based study. Anthropometry, fasting bloods, coronary artery calcification scoring, blood pressure, and renal function were measured. RESULTS Diabetes and hyperglycemia across the spectrum of HbA1c had a greater adverse effect on LV function in South Asians than Europeans (N-terminal-probrain natriuretic peptide β ± SE 0.09 ± 0.04, P = 0.01, vs. −0.04 ± 0.05, P = 0.4, P for HbA1c/ethnicity interaction 0.02), diastolic function (E/e′ 0.69 ± 0.12, P < 0.0001, vs. 0.09 ± 0.2, P = 0.6, P for interaction 0.005), and systolic function (s′ −0.11 ± 0.06, P = 0.04, vs. 0.14 ± 0.09, P = 0.1, P for interaction 0.2). Multivariable adjustment for hypertension, microvascular disease, LV mass, coronary disease, and dyslipidemia only partially accounted for the ethnic differences. Adverse LV function in diabetic South Asians could not be accounted for by poorer glycemic control or longer diabetes duration. CONCLUSIONS Diabetes and hyperglycemia have a greater adverse effect on LV function in South Asians than Europeans, incompletely explained by adverse risk factors. South Asians may require earlier and more aggressive treatment of their cardiometabolic risk factors to reduce risks of LV dysfunction

    Cardiovascular Risk Factors from Early Life Predict Future Adult Cardiac Structural and Functional Abnormalities: A Systematic Review of the Published Literature

    Get PDF
    Background: Clinical practice evaluates cardiovascular risk based on current risk factor (RF) levels [Blood pressure (BP), body mass index (BMI) and glycaemic control] largely disregarding previous risk-factor history over the totality of the life course. RFs are related to contemporaneous echocardiographic measures of cardiac structure and function which in turn are independently related to cardiovascular morbidity and mortality in cross-sectional studies. However, the effect of lifetime or earlier RF history on future echocardiographic changes has never been systematically examined. Methods: A systematic review of the published literature identified 24 studies relating either earlier BP, BMI, glycaemic control or a combination to future cardiac structure and/or function. Results: The majority of studies showed that elevated BP and BMI in earlier life and greater cumulative burden of these factors resulted in worse cardiac structure up to 24 years later. Studies examining glycaemic control as a RF were few, but poorer glycaemic control in young adults was associated with increased future left ventricular mass. While only 5 papers related RFs to future cardiac function, all RFs were positively associated with worse future diastolic function. Conclusions: BP, BMI and glycaemic control measures in childhood, adolescence and early adulthood and subsequent longitudinal trajectories of BP and BMI are predictive of future abnormalities in cardiac structure and function. Lifetime RF history should be used to inform clinical practice. Further research is required to enable the identification of any sensitive periods in the life course to enable prevention when it is most likely to be effective

    Midlife blood pressure predicts future diastolic dysfunction independently of blood pressure

    Get PDF
    OBJECTIVES: High blood pressure (BP) is associated with diastolic dysfunction, but the consequence of elevated BP over the adult life course on diastolic function is unknown. We hypothesised that high BP in earlier adulthood would be associated with impaired diastolic function independent of current BP. METHODS: Participants in the Medical Research Council National Survey of Health and Development birth cohort (n=1653) underwent investigations including echocardiography at age 60-64 years. The relationships between adult BP, antihypertensive treatment (HTT) and echocardiographic measures of diastolic function were assessed using adjusted regression models. RESULTS: Increased systolic BP (SBP) at ages 36, 43 and 53 years was predictive of increased E/e' and increased left atrial volume. These effects were only partially explained by SBP at 60-64 years and increased left ventricular mass. HTT was also associated with poorer diastolic function after adjustment for SBP at 60-64 years. Faster rates of increase in SBP in midlife were also associated with increased poorer diastolic function. CONCLUSIONS: High SBP in midlife is associated with poorer diastolic function at age 60-64 years. Early identification of individuals with high BP or rapid rises in BP may be important for prevention of impaired cardiac function in later life

    Molecular Basis of ß-­arrestin Coupling to Formoterol-­Bound ß1-­adrenoceptor

    Get PDF
    The β1-adrenoceptor (β1AR) is a G-protein-coupled receptor (GPCR) that couples1 to the heterotrimeric G protein Gs. G-protein-mediated signalling is terminated by phosphorylation of the C terminus of the receptor by GPCR kinases (GRKs) and by coupling of β-arrestin 1 (βarr1, also known as arrestin 2), which displaces Gs and induces signalling through the MAP kinase pathway2. The ability of synthetic agonists to induce signalling preferentially through either G proteins or arrestins-known as biased agonism3-is important in drug development, because the therapeutic effect may arise from only one signalling cascade, whereas the other pathway may mediate undesirable side effects4. To understand the molecular basis for arrestin coupling, here we determined the cryo-electron microscopy structure of the β1AR-βarr1 complex in lipid nanodiscs bound to the biased agonist formoterol5, and the crystal structure of formoterol-bound β1AR coupled to the G-protein-mimetic nanobody6 Nb80. βarr1 couples to β1AR in a manner distinct to that7 of Gs coupling to β2AR-the finger loop of βarr1 occupies a narrower cleft on the intracellular surface, and is closer to transmembrane helix H7 of the receptor when compared with the C-terminal α5 helix of Gs. The conformation of the finger loop in βarr1 is different from that adopted by the finger loop of visual arrestin when it couples to rhodopsin8. β1AR coupled to βarr1 shows considerable differences in structure compared with β1AR coupled to Nb80, including an inward movement of extracellular loop 3 and the cytoplasmic ends of H5 and H6. We observe weakened interactions between formoterol and two serine residues in H5 at the orthosteric binding site of β1AR, and find that formoterol has a lower affinity for the β1AR-βarr1 complex than for the β1AR-Gs complex. The structural differences between these complexes of β1AR provide a foundation for the design of small molecules that could bias signalling in the β-adrenoceptors

    Genetically encoded intrabody sensors report the interaction and trafficking of β-arrestin 1 upon activation of G protein-coupled receptors

    Get PDF
    Agonist stimulation of G protein-coupled receptors (GPCRs) typically leads to phosphorylation of GPCRs and binding to multifunctional proteins called β-arrestins (βarrs). The GPCR-βarr interaction critically contributes to GPCR desensitization, endocytosis, and downstream signaling, and GPCR-βarr complex formation can be used as a generic readout of GPCR and βarr activation. Although several methods are currently available to monitor GPCR-βarr interactions, additional sensors to visualize them may expand the toolbox and complement existing methods. We have previously described antibody fragments (FABs) that recognize activated βarr1 upon its interaction with the vasopressin V2 receptor C-terminal phosphopeptide (V2Rpp). Here, we demonstrate that these FABs efficiently report the formation of a GPCR-βarr1 complex for a broad set of chimeric GPCRs harboring the V2R C terminus. We adapted these FABs to an intrabody format by converting them to single-chain variable fragments (ScFvs) and used them to monitor the localization and trafficking of βarr1 in live cells. We observed that upon agonist simulation of cells expressing chimeric GPCRs, these intrabodies first translocate to the cell surface, followed by trafficking into intracellular vesicles. The translocation pattern of intrabodies mirrored that of βarr1, and the intrabodies co-localized with βarr1 at the cell surface and in intracellular vesicles. Interestingly, we discovered that intrabody sensors can also report βarr1 recruitment and trafficking for several unmodified GPCRs. Our characterization of intrabody sensors for βarr1 recruitment and trafficking expands currently available approaches to visualize GPCR-βarr1 binding, which may help decipher additional aspects of GPCR signaling and regulation

    Ethylene induced stay-green gene expression regulates drought stress in wheat

    Get PDF
    761-769Stay-green is an integrated drought adaptation trait characterized by a green leaf phenotype during grain filling under terminal drought. Ethylene is the key hormone for regulating the leaf senescence pathway under natural and stress conditions. The present study was conducted to assess the associative function of ethylene in regulating chlorophyll degrading enzymes viz., chlorophyllase (TaCHLase) and pheophorbide a oxygenase (TaPaO) in wheat (Triticum aestivum L.) under drought stress. Three wheat genotypes (HW 4059, HW 4022 and HW 2078) differing in drought tolerance efficiency were subjected to drought stress for ten days at the reproductive stage. A decline in stay-green traits was found in susceptible genotypes (HW 4059) with yield losses compared to tolerant ones (HW 4022 and HW 2078). The expression level of TaCHLase1 and TaPaO was higher in susceptible genotypes than tolerant ones under drought/osmotic stress. Ethylene upregulated, while ethylene inhibitors downregulated the gene expression. In this study, a novel gene annotated as TaCHLase1 was cloned. The complete cDNA sequence of TaCHLase1 is composed of 1054 bp nucleotides containing an open reading frame of 960 bp encoding 319 amino acids. The encoded protein contained conserved residues such as lipase motif GXSXGG at position 143-148 and putative active site Ser145. Sequence alignment showed TaCHLase1 shares a higher degree of identity with other species. The result suggested that ethylene upregulates the expression of TaCHLase1 gene, inducing chlorophyll degradation. The study further helps in understanding the mechanism of stay-green trait-induced drought tolerance mechanism in wheat

    Facile and inexpensive fabrication of zinc oxide based bio-surfaces for C-reactive protein detection

    Get PDF
    © 2018, The Author(s). The paper reports a biosensor formed from antibody coated ZnO nano-crystals which has been prepared using a rapid and inexpensive fabrication method which utilises colloidal dispersion enhanced using sonication. This technique was used to prepare highly ordered and uniform nano-crystalline sensor surfaces on polyethylene terephthalate (PET) using 0.5%, 1% and 5% concentrations of zinc oxide nano-crystal suspensions. Impedance spectroscopy was employed to interrogate the sensor surfaces and confirmed high reproducibility of the fabrication process. Changes in impedance values, at a frequency of 138 Hz, were used to establish dose dependent responses for C-reactive protein (CRP) antigen. A limit of detection of less than 1 ng/ml was demonstrated fornano-surfaces fabricated from concentrations of 1% ZnO

    Progress of children with severe acute malnutrition in the malnutrition treatment centre rehabilitation program: evidence from a prospective study in Jharkhand, India

    Get PDF
    Background In Jharkhand, Malnutrition Treatment Centres (MTCs) have been established to provide care to children with severe acute malnutrition (SAM). The study examined the effects of facility- and community based care provided as part the MTC program on children with severe acute malnutrition. Method A cohort of 150 children were enrolled and interviewed by trained investigators at admission, discharge, and after two months on the completion of the community-based phase of the MTC program. Trained investigators collected data on diet, morbidity, anthropometry, and utilization of health and nutrition services. Results We found no deaths among children attending the MTC program. Recovery was poor, and the majority of children demonstrated poor weight gain, with severe wasting and underweight reported in 52 and 83% of the children respectively at the completion of the community-based phase of the MTC program. The average weight gain in the MTC facility (3.8 ± 5.9 g/kg body weight/d) and after discharge (0.6 ± 2.1 g/kg body weight/d) was below recommended standards. 67% of the children consumed food that met less than 50% of the recommended energy and protein requirement. Children experienced high number of illness episodes after discharge: 68% children had coughs and cold, 40% had fever and 35% had diarrhoea. Multiple morbidities were common: 50% of children had two or more episodes of illness. Caregiver’s exposure to MTC’s health and nutrition education sessions and meetings with frontline workers did not improve feeding practices at home. The take-home ration amount distributed to children through the supplementary food program was inadequate to achieve growth benefits. Conclusions Recovery of children during and after the MTC program was suboptimal. This highlights the need for additional support to strengthen MTC program so that effective care to children can be provided
    corecore