2,142 research outputs found

    Coherent Waveform Consistency Test for LIGO Burst Candidates

    Full text link
    The burst search in LIGO relies on the coincident detection of transient signals in multiple interferometers. As only minimal assumptions are made about the event waveform or duration, the analysis pipeline requires loose coincidence in time, frequency and amplitude. Confidence in the resulting events and their waveform consistency is established through a time-domain coherent analysis: the r-statistic test. This paper presents a performance study of the r-statistic test for triple coincidence events in the second LIGO Science Run (S2), with emphasis on its ability to suppress the background false rate and its efficiency at detecting simulated bursts of different waveforms close to the S2 sensitivity curve.Comment: 11 pages, 9 figures. Submitted to the Proceedings of the 8th Gravitational Wave Data Analysis Workshop, in Classic and Quantum Gravit

    A First Comparison of SLOPE and Other LIGO Burst Event Trigger Generators

    Get PDF
    A number of different methods have been proposed to identify unanticipated burst sources of gravitational waves in data arising from LIGO and other gravitational wave detectors. When confronted with such a wide variety of methods one is moved to ask if they are all necessary, i.e. given detector data that is assumed to have no gravitational wave signals present, do they generally identify the same events with the same efficiency, or do they each 'see' different things in the detector? Here we consider three different methods, which have been used within the LIGO Scientific Collaboration as part of its search for unanticipated gravitational wave bursts. We find that each of these three different methods developed for identifying candidate gravitational wave burst sources are, in fact, attuned to significantly different features in detector data, suggesting that they may provide largely independent lists of candidate gravitational wave burst events.Comment: 10 Pages, 5 Figures, Presented at the 10th Gravitational Wave Data Analysis Workshop (GWDAW-10), 14-17 December 2005 at the University of Texas, Brownsvill

    Direct observation of large temperature fluctuations during DNA thermal denaturation

    Get PDF
    In this paper we report direct measurement of large low frequency temperature fluctuations in double stranded (ds) DNA when it undergoes thermal denaturation transition. The fluctuation, which occurs only in the temperature range where the denaturation occurs, is several orders more than the expected equilibrium fluctuation. It is absent in single stranded (ss) DNA of the same sequence. The fluctuation at a given temperature also depends on the wait time and vanishes in a scale of few hours. It is suggested that the large fluctuation occurs due to coexisting denaturated and closed base pairs that are in dynamic equilibrium due to transition through a potential barrier in the scale of 25-30k_{B}T_{0}(T_{0}=300K).Comment: 4 pages, 5 figures, Replaced with revised versio

    Antisite Disorder-induced Exchange Bias Effect in Multiferroic Y2CoMnO6

    Full text link
    Exchange bias effect in the ferromagnetic double perovskite compound Y2_2CoMnO6_6, which is also a multiferroic, is reported. The exchange bias, observed below 8~K, is explained as arising due to the interface effect between the ferromagnetic and antiferromagnetic clusters created by {\it antisite} disorder in this material. Below 8~K, prominent ferromagnetic hysteresis with metamagnetic "steps" and significant coercive field, HcH_c \approx 10~kOe are observed in this compound which has a TcT_c \approx 75~K. A model based on growth of ferromagnetic domains overcoming the elastic energy of structurally pinned magnetic interfaces, which closely resembles martensitic-like transitions, is adapted to explain the observed effects. The role of {\it antisite} disorder in creating the domain structure leading to exchange bias effect is highlighted in the present work.Comment: 4 pages two-column, 4 figures, accepted to Appl. Phys. Let

    The glycemic elemental profile of trichosanthes dioica: a LIBS-based study

    Get PDF
    The scientific evaluation of the antidiabetic efficacy of aqueous extract of Trichosanthes dioica fruits on streptozotocin-induced diabetic rats is being presented. The graded doses of the extract, viz., 500, 750, 1,000, and 1,250 mg/kg body weight (bw), were administered orally, and it was observed that the blood glucose concentration decreased in a dose-dependent manner. The dose of 1,000 mg/kg bw showed the maximum fall of 23.8% and 19.1% in blood glucose level (BGL) during fasting BGL and glucose tolerance test (GTT) studies, respectively, of nondiabetic rats. Whereas in the case of subdiabetic and mild diabetic models, the same dose showed reduction in BGL of 22.0% and 31.4% during GTT. The study also involves the first use of laser-induced breakdown spectroscopy as a sensitive analytical tool to detect the elemental profile responsible for the antidiabetic activity of aqueous extract of T. dioica fruits that exhibits the antidiabetic activity. High intensities of Ca, Mg, and Fe indicate large concentrations of these elements in the extract, since according to Boltzmann’s distribution law, intensities are directly proportional to concentrations. The higher concentrations of these glycemic elements, viz. Ca, Mg, and Fe, are responsible for the antidiabetic potential of T. dioica as well as other plant already reported by our research group

    Multiferroic coupling in nanoscale BiFeO3

    Get PDF
    Using the results of x-ray and neutron diffraction experiments, we show that the ferroelectric polarization, in ~22 nm particles of BiFeO3, exhibits a jump by ~30% around the magnetic transition point T_N (~635 K) and a suppression by ~7% under 5T magnetic field at room temperature (<<T_N). These results confirm presence of strong multiferroic coupling even in nanoscale BiFeO3 and thus could prove to be quite useful for applications based on nanosized devices of BiFeO3.Comment: 4 pages including 4 figures and supplementary data; accepted for publication in Appl. Phys. Let
    corecore