82 research outputs found

    Emissions Relationships in Western Forest Fire Plumes: I. Reducing the Effect of Mixing Errors on Emission Factors

    Get PDF
    Studies of emission factors from biomass burning using aircraft data complement the results of lab studies and extend them to conditions of immense hot conflagrations. We illustrate and discuss emission relationships for 422 individual samples from many forest-fire plumes in the Western US. The samples are from two NASA investigations: ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys). This work provides sample-by-sample enhancement ratios (EnRs) for 23 gases and particulate properties. Many EnRs provide candidates for emission ratios (ERs, corresponding to the EnR at the source) when the origin and degree of transformation is understood and appropriate. From these, emission factors (EFs) can be estimated when the fuel dry mass consumed is known or can be estimated using the carbon mass budget approach. This analysis requires understanding the interplay of mixing of the plume with surrounding air. Some initial examples emphasize that measured C(tot) = CO2 + CO in a fire plume does not necessarily describe the emissions of the total carbon liberated in the flames, C(burn). Rather, it represents C(tot) = C(burn) + C(bkgd), which includes possibly varying background concentrations for entrained air. Consequently, we present a simple theoretical description for plume entrainment for multiple tracers from flame to hundreds of kilometers downwind and illustrate some intrinsic linear behaviors. The analysis suggests a Mixed Effects Regression Emission Technique (MERET), which can eliminate occasional strong biases associated with the commonly used normalized excess mixing ratio (NEMR) method. MERET splits C(tot) to reveal C(burn) by exploiting the fact that C(burn) and all tracers respond linearly to dilution, while each tracer has consistent EnR behavior (slope of tracer concentration with respect to C(burn)). The two effects are separable. Two or three or preferably more emission indicators are required as a minimum; here we used ten. Limited variations in the EnRs for each tracer can be incorporated and the variations and co-variations analyzed. The percentage CO yield (or the modified combustion efficiency) plays some role. Other co-relationships involving nitrogen and organic classes are more prominent; these have strong relationships to the C(burn) to O3 emission relationship. In summary, MERET allows fine spatial resolution (EnRs for individual observations) and comparison of similar plumes distant in time and space. Alkene ratios provide us with an approximate photochemical timescale. This allows discrimination and definition, by fire situation, of ERs, allowing us to estimate emission factors

    The GeoCarb Mission: One Tool in the Evolving Understanding of Methane and Carbon Monoxide Budgets

    Get PDF
    NASA plans to operate an instrument in geostationary orbit over the Americas beginning in 2022. This mission allows a coordinated study of climate-determining carbon species. Prime focus is on CO2 fluxes, but the reactive species CO and CH4 are particularly relevant to IGAC. Measurements of solar-induced fluorescence will describe plant photosynthesis contemporaneous with emissions. To outline the technology: Grating mapping spectrometery, using a single slit and four focal planes set at 0.76, 1.60, 2.07, and 2.32 microns and ~17000 resolving power. Retrieval profiting from the rich heritage of OCO-2, GOSAT, TropOMI, and GOME/SCIAMACHY. Column concentrations of CO2, CH4, and CO, with finest resolution at 3 km x 6 km. A selection of scans allowing appreciable refinement in fluxes of CO2 and CH4. Rapid re-pointing allowing at least one synoptic observation of all North and South America daily, and 3 observations through the day for selected areas.This presentation is an appeal to IGAC community to use GeoCarb to help improve the attribution of fluxes by sector and by geography. Cost constraints allow GeoCarb only limited listed goals. For example, GeoCarb aspires to constrain CH4 emissions for the whole US, closing the ~60% gap between US EPA estimation and 3-d models. Detailed CO measurements should also aid photochemical and aerosol studies. NASA's TEMPO (UV-Vis geostationary) instrument will overlap GeoCarb. Consequently, HCHO, NO2, aerosol, and CO may be intercompared, allowing elucidation of chemical sources and also transformation timescales. We expect that Sentinel-5P's TropOMI will lead the way here; geostationary imaging will allow diurnal views and reduced cloud obscuration of interesting areas. Analysis of current data suggests interesting questions: (a) puzzling XCH4 diel variations in the Amazonian rainforest; (b) time-varying CO/NO2 relationships in urban plumes. We also urge the suite of airborne and small-sat measurements needed to complete the story at fine scales

    Revised (Mixed-Effects) Estimation for Forest Burning Emissions of Gases and Smoke, Fire/Emission Factor Typology, and Potential Remote Sensing Classification of Types for Ozone and Black-Carbon Simulation

    Get PDF
    We summarize recent progress (a) in correcting biomass burning emissions factors deduced from airborne sampling of forest fire plumes, (b) in understanding the variability in reactivity of the fresh plumes sampled in ARCTAS (2008), DC3 (2012), and SEAC4RS (2013) airborne missions, and (c) in a consequent search for remotely sensed quantities that help classify forest-fire plumes. Particle properties, chemical speciation, and smoke radiative properties are related and mutually informative, as pictures below suggest (slopes of lines of same color are similar). (a) Mixed-effects (random-effects) statistical modeling provides estimates of both emission factors and a reasonable description of carbon-burned simultaneously. Different fire plumes will have very different contributions to volatile organic carbon reactivity; this may help explain differences of free NOx(both gas- and particle-phase), and also of ozone production, that have been noted for forest-fire plumes in California. Our evaluations check or correct emission factors based on sequential measurements (e.g., the Normalized Ratio Enhancement and similar methods). We stress the dangers of methods relying on emission-ratios to CO. (b) This work confirms and extends many reports of great situational variability in emissions factors. VOCs vary in OH reactivity and NOx-binding. Reasons for variability are not only fuel composition, fuel condition, etc., but are confused somewhat by rapid transformation and mixing of emissions. We use "unmixing" (distinct from mixed-effects) statistics and compare briefly to approaches like neural nets. We focus on one particularly intense fire the notorious Yosemite Rim Fire of 2013. In some samples, NOx activity was not so suppressed by binding into nitrates as in other fires. While our fire-typing is evolving and subject to debate, the carbon-burned delta(CO2+CO) estimates that arise from mixed effects models, free of confusion by background-CO2 variation, should provide a solid base for discussion. (c) We report progress using promising links we find between emissions-related "fire types" and promising features deducible from remote observations of plumes, e.g., single scatter albedo, Angstrom exponent of scattering, Angstrom exponent of absorption, (CO column density)/(aerosol optical depth)

    Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate which Fires Produce Ozone

    Get PDF
    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(burn) = delta C(tot) added to the fire plume, where C(tot) approximately equals (CO2 = CO). Mixed-effects regression can estimate pre-fire background values of C(tot) (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta, epsilon lambda tau alpha-x(sub I)/C(sub burn))I,j. MERET and "consensus" require more than emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (b scant, b abs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx binding to reactive organic

    Emissions Relationships Among Western Forest Fire Plumes: I. Emission Factors Free from Mixing Errors

    Get PDF
    Previous studies of emission factors from biomass burning are prone to largeerrors since they ignore the interplay of mixing and varying pre-fire backgroundCO2 levels. Such complications severely affected our studies of 446 forest fireplume samples measured in the Western US by the science teams of NASAsSEAC4RS and ARCTAS airborne missions. Consequently we propose a MixedEffects Regression Emission Technique (MERET) to check techniques like theNormalized Emission Ratio Method (NERM), where use of sequentialobservations cannot disentangle emissions and mixing. We also evaluate asimpler consensus technique. All techniques relate emissions to fuel burnedusing C burn = Ctot added to the fire plume, where Ctot (CO2 + CO). Mixed-effectsregression can estimate pre-fire background values of Ctot (indexed byobservation j) simultaneously with emissions factors indexed by individual species i, -xi (Cburn )i,j., MERET and consensus require more than twoemissions indicators. Our studies excluded samples where exogenous CO orCH4 might have been fed into a fire plume, mimicking emission.We sought to let the data on 13 gases and particulate properties suggest clustersof variables and plume types, using non-negative matrix factorization (NMF).While samples were mixtures, the NMF unmixing suggested purer burn types.Particulate properties (bscat, babs, SSA, AE) and gas-phase emissions were interrelated.Finally, we sought a simple categorization useful for modeling ozone productionin plumes. Two kinds of fires produced high ozone: those with large fuel nitrogenas evidenced by remnant CH3CN in the plumes, and also those from veryintense large burns. Fire types with optimal ratios of delta-NOydelta-HCHO associate with the highest additional ozone per unit Cburn, Perhaps theseplumes exhibit limited NOx binding to reactive organics. Perhaps these plumesexhibit limited NOx binding to reactive organics

    Quantitative Daily Maps of PM 2.5 Episodes for California and Other Regions: Satellite Column Water and Optical Depth as Allied Tracers of Dilution

    Get PDF
    The Western US and many regions globally present daunting difficulties in understanding PM 2.5 episodes. We evaluate extensions of a method independent of modeled source-description and transport/transformation and using several satellite remote sensing products from imaging spectrometers. The San Joaquin Valley (SJV) especially suffers few-day episodes due to shallow mixing; PM 2.5 retrieval suffers low satellite AOT (Aerosol Optical Thickness) and bright surfaces.Nevertheless, we find residual errors in our maps of of typically 5-8 micrograms per cubic meter. Episodes in the Valley reaching 60-100 micrograms per cubic meter. These maps detail pollution from Interstate 5 at the scale of a few kilometers. The maps are based on NASA's MODerate resolution Imaging Spectrometer (MODIS) data at circa 1 kilometer as processed with the Multi-Angle Implementation of Atmospheric Correction. The Bay Area Air Quality Management District has requested that we test our methods in their challenging environment characterized by multiple sub-basins defined by complex topography. Our tests suggest that nearly similar precision may be expected for wintertime conditions with high PM 2.5 . We note difficulties when measured PM 2.5 is less than 8-10 micrograms per cubic meter, but good relative precision when PM 2.5 rises above 20; i.e. in episodes of concern for morbidity and mortality. Our method stresses physically meaningful functions of MODIS-MAIAC (Multi-Angle Implementation of Atmospheric Correction)-derived AOD (Aerosol Optical Depth) and total water vapor column. A mixed-effects statistical model exploiting existing station data works powerfully to allow us daily AOT-to-PM 2.5 relationships that allow a calibration of the map. In those cases where water vapor and particles have generally similar surface sources, using the ratio of AOT / Column_water can improve the daily calibrations so as to reach our quoted precision. We briefly present some cartoon idealizations that explain this success and also the likely reasons that our mixed effects model (or "daily calibration") works; also when it should not work. The combined satellite/mixed-effects model works best for wintertime San Joaquin Valley episodes, where the meteorology of particle and H2O(v) dilution is quite appropriate. We extended and tested the methodology (a) for the Bay Area wintertime situations and (b) for smoke plume events (e.g. the October 2017 fire events of the Sonoma area). Our SJV work was evaluated using NASA's DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) airborne measurements, and by season- long measurements in Fresno. If the composition and size distribution of the aerosols can be assessed for the regions we describe, retrievals should have improved accuracy

    Testing Extensions of Our Quantitative Daily of San Joaquin Wintertime Aerosols Using MAIAC and Meteorology Without Transport/Transformation Assumptions

    Get PDF
    The Western US and many regions globally present daunting difficulties in understanding and mapping PM2.5 episodes. We evaluate extensions of a method independent of source-description and transport/transformation. These regions suffer frequent few-day episodes due to shallow mixing; low satellite AOT and bright surfaces complicate the description. Nevertheless, we expect residual errors in our maps of less than 8 ug/m^3 in episodes reaching 60-100 ug/m^3; maps which detail pollution from Interstate 5. Our current success is due to use of physically meaningful functions of MODIS-MAIAC-derived AOD, afternoon mixed-layer height, and relative humidity for a basin in which the latter are correlated. A mixed-effects model then describes a daily AOT-to-PM2.5 relationship. (Note: in other published mixed-effects models, AOT contributes minimally. We seek to extend on these to develop useful estimation methods for similar situations. We evaluate existing but more spotty information on size distribution (AERONET, MISR, MAIA, CALIPSO, other remote sensing). We also describe the usefulness of an equivalent mixing depth for water vapor vs meteorological boundary layer height. Each has virtues and limitations. Finally, we begin to evaluate methods for removing the complications due to detached but polluted layers (which don't mix to the surface) using geographical, meteorological, and remotely sensed data

    Dimethylsulfide oxidation over the tropical South Atlantic: OH and other oxidants

    Get PDF
    The general course of events in the formation of a marine cloud begins with the emission of species which can eventually serve as nuclei around which water can condense to form a cloud droplet. In remote marine regions, cloud condensation nuclei (CCN) are primarily composed of sulfate, in either its acid or ammonium salt form. Most sulfate in these regions is the product of atmospheric oxidation of dimethyl sulfide (DMS), a reduced sulfur gas that is released by phytoplankton at the ocean surface. Therefore, in order to effectively quantify the links in the cloud-formation cycle, one must begin with a well-defined description of the atmospheric chemistry of DMS. The intent of this project has been to initiate development of a comprehensive model of the chemistry and dynamics responsible for the formation of clouds in the remote marine boundary layer. The primary tool in this work has been the Global/Regional Atmospheric Chemistry Event Simulator (GRACES), a global atmospheric chemistry model, which is under development within the Atmospheric Chemistry and Dynamics Branch of NASA-Ames Research Center. In this effort, GRACES was used to explore the first chemical link between DMS and sulfate by modeling the diurnal variation of DMS

    Random walk of motor planning in task-irrelevant dimensions

    Get PDF
    The movements that we make are variable. It is well established that at least a part of this variability is caused by noise in central motor planning. Here, we studied how the random effects of planning noise translate into changes in motor planning. Are the random effects independently added to a constant mean end point, or do they accumulate over movements? To distinguish between these possibilities, we examined repeated, discrete movements in various tasks in which the motor output could be decomposed into a task-relevant and a task-irrelevant component. We found in all tasks that the task-irrelevant component had a positive lag 1 autocorrelation, suggesting that the random effects of planning noise accumulate over movements. In contrast, the task-relevant component always had a lag 1 autocorrelation close to zero, which can be explained by effective trial-by-trial correction of motor planning on the basis of observed motor errors. Accumulation of the effects of planning noise is consistent with current insights into the stochastic nature of synaptic plasticity. It leads to motor exploration, which may subserve motor learning and performance optimization
    • …
    corecore