research
Quantitative Daily Maps of PM 2.5 Episodes for California and Other Regions: Satellite Column Water and Optical Depth as Allied Tracers of Dilution
- Publication date
- Publisher
Abstract
The Western US and many regions globally present daunting difficulties in understanding PM 2.5 episodes. We evaluate extensions of a method independent of modeled source-description and transport/transformation and using several satellite remote sensing products from imaging spectrometers. The San Joaquin Valley (SJV) especially suffers few-day episodes due to shallow mixing; PM 2.5 retrieval suffers low satellite AOT (Aerosol Optical Thickness) and bright surfaces.Nevertheless, we find residual errors in our maps of of typically 5-8 micrograms per cubic meter. Episodes in the Valley reaching 60-100 micrograms per cubic meter. These maps detail pollution from Interstate 5 at the scale of a few kilometers. The maps are based on NASA's MODerate resolution Imaging Spectrometer (MODIS) data at circa 1 kilometer as processed with the Multi-Angle Implementation of Atmospheric Correction. The Bay Area Air Quality Management District has requested that we test our methods in their challenging environment characterized by multiple sub-basins defined by complex topography. Our tests suggest that nearly similar precision may be expected for wintertime conditions with high PM 2.5 . We note difficulties when measured PM 2.5 is less than 8-10 micrograms per cubic meter, but good relative precision when PM 2.5 rises above 20; i.e. in episodes of concern for morbidity and mortality. Our method stresses physically meaningful functions of MODIS-MAIAC (Multi-Angle Implementation of Atmospheric Correction)-derived AOD (Aerosol Optical Depth) and total water vapor column. A mixed-effects statistical model exploiting existing station data works powerfully to allow us daily AOT-to-PM 2.5 relationships that allow a calibration of the map. In those cases where water vapor and particles have generally similar surface sources, using the ratio of AOT / Column_water can improve the daily calibrations so as to reach our quoted precision. We briefly present some cartoon idealizations that explain this success and also the likely reasons that our mixed effects model (or "daily calibration") works; also when it should not work. The combined satellite/mixed-effects model works best for wintertime San Joaquin Valley episodes, where the meteorology of particle and H2O(v) dilution is quite appropriate. We extended and tested the methodology (a) for the Bay Area wintertime situations and (b) for smoke plume events (e.g. the October 2017 fire events of the Sonoma area). Our SJV work was evaluated using NASA's DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) airborne measurements, and by season- long measurements in Fresno. If the composition and size distribution of the aerosols can be assessed for the regions we describe, retrievals should have improved accuracy