26 research outputs found

    Notch2 Signaling Sensitizes Endothelial Cells to Apoptosis by Negatively Regulating the Key Protective Molecule Survivin

    Get PDF
    BACKGROUND: Notch signaling pathway controls key functions in vascular and endothelial cells (ECs) where Notch4 plays a major role. However, little is known about the contribution of other Notch receptors. This study investigated regulation of Notch2 and further examined its implication in EC dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide evidence for a novel link between Notch and TNF signaling, where Notch2 is upregulated and activated in response to TNF. Forced expression of Notch2 intracellular domain in cultured ECs promotes apoptosis and allows the significant downregulation of several cell-death-related transcripts in a dose-dependent manner. In particular, activation of Notch2 led to a rapid decrease in survivin mRNA and protein expression, while survivin upregulation was obtained by the selective knockdown of Notch2 in ECs, indicating that survivin expression is controlled at the Notch level. Moreover, Notch2 silencing and ectopic expression of survivin, but not XIAP or Bcl2, rescued ECs from TNF and Notch2-mediated apoptosis, respectively. CONCLUSIONS/SIGNIFICANCE: In conclusion, TNF signaling activates Notch2 that sensitizes ECs to apoptosis via modulation of the key apoptosis regulator survivin. Overall, our findings also indicate that specific Notch receptors control distinct functions in vascular cells and inflammatory cytokines contribute to this specificity

    The Unitary Micro-Immunotherapy Medicine Interferon-Îł (4 CH) Displays Similar Immunostimulatory and Immunomodulatory Effects than Those of Biologically Active Human Interferon-Îł on Various Cell Types

    No full text
    As a cytokine, gamma-interferon (IFN-γ) is considered a key player in the fine-tuned orchestration of immune responses. The extreme cellular sensitivity to cytokines is attested by the fact that very few of these bioactive molecules per cell are enough to trigger cellular functions. These findings can, at least partially, explain how/why homeopathically-prepared cytokines, and especially micro-immunotherapy (MI) medicines, are able to drive cellular responses. We focused our fundamental research on a unitary MI preparation of IFN-γ, specifically employed at 4 CH, manufactured and impregnated onto sucrose-lactose pillules as all other MI medicines. We assessed the IFN-γ concentration in the medium after dilution of the IFN-γ (4 CH)-bearing pillules and we evaluated in vitro drug responses in a wide range of immune cells, and in endothelial cells. Our results showed that IFN-γ (4 CH) stimulated the proliferation, the activation and the phagocytic capabilities of primary immune cells, as well as modulated their cytokine-secretion and immunity-related markers’ expression in a trend that is quite comparable with the well-recognized biological effects induced by IFN-γ. Altogether, these data provide novel and additional evidences on MI medicines, and specifically when active substances are prepared at 4 CH, thus suggesting the need for more investigations

    The Micro-Immunotherapy Medicine 2LEID Exhibits an Immunostimulant Effect by Boosting Both Innate and Adaptive Immune Responses

    No full text
    This study aimed at evaluating the effects of the micro-immunotherapy medicine (MIM) 2LEID, both in vitro and in vivo, on several components of the innate and adaptive immune system. MIM increased the phagocytic activity of macrophages, and it augmented the expression of the activation markers CD69 and HLA-DR in NK cells and monocytes/macrophages, respectively. The effect of MIM was evaluated in a model of respiratory infection induced by influenza A virus administration to immunocompetent mice in which it was able to improve neutrophil recruitment within the lungs (p = 0.1051) and slightly increased the circulating levels of IgM (p = 0.1655). Furthermore, MIM stimulated the proliferation of CD3-primed T lymphocytes and decreased the secretion of the immunosuppressive cytokine IL-10 in CD14+-derived macrophages. Human umbilical vein endothelial cells were finally used to explore the effect of MIM on endothelial cells, in which it slightly increased the expression of immune-related markers such as HLA-I, CD137L, GITRL, PD-L1 and ICAM-1. In conclusion, the present study suggests that MIM might be a promising nonspecific (without antigen specificity) immunostimulant drug in preventing and early treating respiratory infections, but not only exclusively, as it would gently support several facets of the immune system and host defenses

    L-MTP-PE and zoledronic acid combination in osteosarcoma: preclinical evidence of positive therapeutic combination for clinical transfer

    No full text
    International audienceOsteosarcoma, the most frequent malignant primary bone tumor in pediatric patients is characterized by osteolysis promoting tumor growth. Lung metastasis is the major bad prognosis factor of this disease. Zoledronic Acid (ZA), a potent inhibitor of bone resorption is currently evaluated in phase III randomized studies in Europe for the treatment of osteosarcoma and Ewing sarcoma. The beneficial effect of the liposomal form of Muramyl-TriPep-tide-Phosphatidyl Ethanolamine (L-mifamurtide, MEPACT®), an activator of macrophage populations has been demonstrated to eradicate lung metastatic foci in osteosarcoma. The objective of this study was to evaluate the potential therapeutic benefit and the safety of the ZA and L-mifamurtide combination in preclinical models of osteosarcoma, as a prerequisite before translation to patients. The effects of ZA (100 µg/kg) and L-mifamurtide (1 mg/kg) were investigated in vivo in xenogeneic and syngeneic mice models of osteosarcoma, at clinical (tumor proliferation, spontaneous lung metastases development), radiological (bone microarchitecture by microCT analysis), biological and histological levels. No interference between the two drugs could be observed on ZA-induced bone protection and on L-mifamurtide-induced inhibition of lung metastasis development. Unexpectedly, ZA and L-mifamurtide association induced an additional and in some cases synergistic inhibition of primary tumor progression. L-mifamurtide has no effect on tumor proliferation in vitro or in vivo, and macrophage population was not affected at the tumor site whatever the treatment. This study evidenced for the first time a significant inhibition of primary osteosarcoma progression when both drugs are combined. This result constitutes a first proof-of-principle for clinical application in osteosarcoma patients

    A Micro-Immunotherapy Sequential Medicine MIM-seq Displays Immunomodulatory Effects on Human Macrophages and Anti-Tumor Properties towards In Vitro 2D and 3D Models of Colon Carcinoma and in an In Vivo Subcutaneous Xenograft Colon Carcinoma Model

    No full text
    In this study, the immunomodulatory effects of a sequential micro-immunotherapy medicine, referred as MIM-seq, were appraised in human primary M1 and M2 macrophages, in which the secretion of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-12, IL-23, and tumor necrosis factor (TNF)-alpha, was inhibited. In addition, the potential anti-proliferative effects of MIM-seq on tumor cells was assessed in three models of colorectal cancer (CRC): an in vitro two-dimensions (2D) model of HCT-116 cells, an in vitro tri-dimensional (3D) model of spheroids, and an in vivo model of subcutaneous xenografted mice. In these models, MIM-seq displayed anti-proliferative effects when compared with the vehicle. In vivo, the tumor growth was slightly reduced in MIM-seq-treated animals. Moreover, MIM-seq could slightly reduce the growth of our spheroid models, especially under serum-deprivation. When MIM-seq was combined with two well-known anti-cancerogenic agents, either resveratrol or etoposide, MIM-seq could even further reduce the spheroid’s volume, pointing up the need to further assess whether MIM-seq could be beneficial for CRC patients as an adjuvant therapy. Altogether, these data suggest that MIM-seq could have anti-tumor properties against CRC and an immunomodulatory effect towards the mediators of inflammation, whose systemic dysregulation is considered to be a poor prognosis for patients

    In vitro and in vivo discrepancy in inducing apoptosis by mesenchymal stromal cells delivering membrane-bound tumor necrosis factor–related apoptosis inducing ligand in osteosarcoma pre-clinical models

    No full text
    International audienceIn vitro and in vivo discrepancy in inducing apoptosis by mesenchymal stromal cells delivering membrane-bound tumor necrosis factorÀrelated apoptosis inducing ligand in osteosarcoma pre-clinical models Abstract Background: Osteosarcoma (OS) is the most frequent pediatric malignant bone tumor. OS patients have not seen any major therapeutic progress in the last 30 years, in particular in the case of metastatic disease, which requires new therapeutic strategies. The pro-apoptotic cytokine Tumor necrosis factor (TNF)ÀRelated Apoptosis Inducing Ligand (TRAIL) can selectively kill tumor cells while sparing normal cells, making it a promising therapeutic tool in several types of cancer. However, many OS cell lines appear resistant to recombinant human (rh)TRAIL-induced apoptosis. We, therefore, hypothesized that TRAIL presentation at the membrane level of carrier cells might overcome this resistance and trigger apoptosis. Methods: To address this, human adipose mesenchymal stromal cells (MSCs) transfected in a stable manner to express membrane-bound full-length human TRAIL (mbTRAIL) were co-cultured with several human OS cell lines. Results: This induced apoptosis by cell-to-cell contact even in cell lines initially resistant to rhTRAIL. In contrast, mbTRAIL delivered by MSCs was not able to counteract tumor progression in this OS orthotopic model. Discussion: This was partly due to the fact that MSCs showed a potential to support tumor development. Moreover, the expression of mbTRAIL did not show caspase activation in adjacent tumor cells

    MICA Variant Promotes Allosensitization after Kidney Transplantation

    No full text
    International audienceMHC class I-related chain A (MICA) antigens are surface glycoproteins strongly implicated in innate immunity , and the MICA gene is highly polymorphic. Clinical observations suggest a role for donor MICA antigens expressed on transplant endothelial cells in the alloimmune response, but the effect of MICA genotype is not well understood. Here, we investigated the immunologic effect of the A5.1 mutation, related to the common MICA*008 allele. Compared with wild-type endothelial cells (ECs), homozygosity for MICA A5.1 associated with an endothelial phenotype characterized by 7-to 10-fold higher levels of MICA mRNA and MICA proteins at the cell surface, as well as exclusive release in exosomes instead of enzymatic cleavage. Mechanistically, we did not detect quantitative changes in regulatory microRNAs. Functionally, A5.1 ECs enhanced NKG2D interaction and natural killer cell activation, promoting NKG2D-dependent lysis of ECs. In kidney transplant recipients, polyreactive anti-MICA sera bound preferentially to ECs from MICA A5.1 donors, suggesting that MICA*008(A5.1) molecules are the preferential antigenic determinants on ECs of grafts. Furthermore, the incidence of MICA A5.1 mismatch revealed a statistically significant association between donor MICA A5.1 and both anti-MICA sensitization and increased pro-teinuria in kidney recipients. Taken together, these results identify the A5.1 mutation as an immunodo-minant factor and a potential risk factor for transplant survival

    Natural hybridization in the annual plant genus Rhinanthus: from populations to species

    No full text
    International audienceOBJECTIVE/BACKGROUND:Arterial calcification, a process that mimics bone formation, is an independent risk factor of cardiovascular morbidity and mortality, and has a significant impact on surgical and endovascular procedures and outcomes. Research efforts have focused mainly on the coronary arteries, while data regarding the femoral territory remain scarce.METHODS:Femoral endarterectomy specimens, clinical data, and plasma from a cohort of patients were collected prospectively. Histological analysis was performed to characterize the cellular populations present in the atherosclerotic lesions, and that were potentially involved in the formation of bone like arterial calcification known as osteoid metaplasia (OM). Enzyme linked immunosorbent assays and cell culture assays were conducted in order to understand the cellular and molecular mechanisms underlying the formation of OM in the lesions.RESULTS:Twenty-eight of the 43 femoral plaques (65%) displayed OM. OM included osteoblast and osteoclast like cells, but very few of the latter exhibited the functional ability to resorb mineral tissue. As in bone, osteoprotegerin (OPG) was significantly associated with the presence of OM (p = .04). Likewise, a high plasma OPG/receptor activator for the nuclear factor kappa B ligand (RANKL) ratio was significantly associated with the presence of OM (p = .03). At the cellular level, there was a greater presence of pericytes in OM+ compared with OM- lesions (5.59 ± 1.09 vs. 2.42 ± 0.58, percentage of area staining [region of interest]; p = .04); in vitro, pericytes were able to inhibit the osteoblastic differentiation of human mesenchymal stem cells, suggesting that they are involved in regulating arterial calcification.CONCLUSION:These results suggest that bone like arterial calcification (OM) is highly prevalent at femoral level. Pericyte cells and the OPG/RANK/RANKL triad seem to be critical to the formation of this ectopic osteoid tissue and represent interesting potential therapeutic targets to reduce the clinical impact of arterial calcification
    corecore