678 research outputs found

    Single-photon entanglement generation by wavefront shaping in a multiple-scattering medium

    Full text link
    We demonstrate the control of entanglement of a single photon between several spatial modes propagating through a strongly scattering medium. Measurement of the scattering matrix allows the wavefront of the photon to be shaped to compensate the distortions induced by multiple scattering events. The photon can thus be directed coherently to a single or multi-mode output. Using this approach we show how entanglement across different modes can be manipulated despite the enormous wavefront disturbance caused by the scattering medium.Comment: 4 pages, 3 figures, reference adde

    Evaluation of options for harvest of a recombinant E. coli fermentation producing a domain antibody using ultra scale-down techniques and pilot-scale verification

    Get PDF
    Ultra scale-down (USD) methods operating at the millilitre scale were used to characterise full-scale processing of E. coli fermentation broths autolysed to different extents for release of a domain antibody. The focus was on the primary clarification stages involving continuous centrifugation followed by depth filtration. The performance of this sequence was predicted by USD studies to decrease significantly with increased extents of cell lysis. The use of polyethyleneimine (PEI) reagent was studied to treat the lysed cell broth by precipitation of soluble contaminants such as DNA and flocculation of cell debris material. The USD studies were used to predict the impact of this treatment on the performance and here it was found that the fermentation could be run to maximum productivity using an acceptable clarification process (e.g a centrifugation stage operating at 0.11 L per m(2) equivalent gravity settling area per h followed by a resultant required depth filter area of 0.07 m(2) per L supernatant). A range of USD predictions was verified at the pilot scale for centrifugation followed by depth filtration. This article is protected by copyright. All rights reserved

    Ultra scale-down approaches to enhance the creation of bioprocesses at scale: impacts of process shear stress and early recovery stages

    Get PDF
    The sensitivity of biological materials to shear stress conditions encountered during large-scale bioprocessing makes successful scale up from the bench challenging. Ultra scale-down technologies seek to use just millilitre quantities to enhance our understanding of the impact of the process environment as a basis for process optimisation. They can help speed translation of new biological discoveries to market and reduce risks encountered in scale up. They are important both as process discovery tools and as preparative tools to yield material for study of subsequent stages. In this review the focus is on the early recovery stages post fermentation or cell culture and in particular the use of continuous-flow and dead-end centrifugation integrated with preparative stages (e.g. flocculation) and subsequent depth filtration. Examples range from therapeutic antibodies, to rationally engineered (synthetic biology) host strains, to stem cells for therapy

    Laser-induced electron emission from a tungsten nanotip: identifying above threshold photoemission using energy-resolved laser power dependencies

    Full text link
    We present an experiment studying the interaction of a strongly focused 25 fs laser pulse with a tungsten nanotip, investigating the different regimes of laser-induced electron emission. We study the dependence of the electron yield with respect to the static electric field applied to the tip. Photoelectron spectra are recorded using a retarding field spectrometer and peaks separated by the photon energy are observed with a 45 % contrast. They are a clear signature of above threshold photoemission (ATP), and are confirmed by extensive spectrally resolved studies of the laser power dependence. Understanding these mechanisms opens the route to control experiment in the strong-field regime on nanoscale objects.Comment: 9 pages, 6 figure

    Neutralization of IFN-γ reverts clinical and laboratory features in a mouse model of macrophage activation syndrome.

    Get PDF
    BACKGROUND: The pathogenesis of macrophage activation syndrome (MAS) is not clearly understood: a large body of evidence supports the involvement of mechanisms similar to those implicated in the setting of primary hemophagocytic lymphohistiocytosis. OBJECTIVE: We sought to investigate the pathogenic role of IFN-γ and the therapeutic efficacy of IFN-γ neutralization in an animal model of MAS. METHODS: We used an MAS model established in mice transgenic for human IL-6 (IL-6TG mice) challenged with LPS (MAS mice). Levels of IFN-γ and IFN-γ-inducible chemokines were evaluated by using real-time PCR in the liver and spleen and by means of ELISA in plasma. IFN-γ neutralization was achieved by using the anti-IFN-γ antibody XMG1.2 in vivo. RESULTS: Mice with MAS showed a significant upregulation of the IFN-γ pathway, as demonstrated by increased mRNA levels of Ifng and higher levels of phospho-signal transducer and activator of transcription 1 in the liver and spleen and increased expression of the IFN-γ-inducible chemokines Cxcl9 and Cxcl10 in the liver and spleen, as well as in plasma. A marked increase in Il12a and Il12b expression was also found in livers and spleens of mice with MAS. In addition, mice with MAS had a significant increase in numbers of liver CD68+ macrophages. Mice with MAS treated with an anti-IFN-γ antibody showed a significant improvement in survival and body weight recovery associated with a significant amelioration of ferritin, fibrinogen, and alanine aminotransferase levels. In mice with MAS, treatment with the anti-IFN-γ antibody significantly decreased circulating levels of CXCL9, CXCL10, and downstream proinflammatory cytokines. The decrease in CXCL9 and CXCL10 levels paralleled the decrease in serum levels of proinflammatory cytokines and ferritin. CONCLUSION: These results provide evidence for a pathogenic role of IFN-γ in the setting of MAS

    The Non--Ergodicity Threshold: Time Scale for Magnetic Reversal

    Full text link
    We prove the existence of a non-ergodicity threshold for an anisotropic classical Heisenberg model with all-to-all couplings. Below the threshold, the energy surface is disconnected in two components with positive and negative magnetizations respectively. Above, in a fully chaotic regime, magnetization changes sign in a stochastic way and its behavior can be fully characterized by an average magnetization reversal time. We show that statistical mechanics predicts a phase--transition at an energy higher than the non-ergodicity threshold. We assess the dynamical relevance of the latter for finite systems through numerical simulations and analytical calculations. In particular, the time scale for magnetic reversal diverges as a power law at the ergodicity threshold with a size-dependent exponent, which could be a signature of the phenomenon.Comment: 4 pages 4 figure

    BRSMG Curinga: cultivar de arroz de terras altas de ampla adaptação para o Brasil.

    Get PDF
    O objetivo deste trabalho é a apresentação das características da BRSMG Curinga, a sétima cultivar de arroz de terras altas originária da colaboração da Embrapa com o programa CIAT/CIRAD, lançada em 2005 para cultivo em condições de terras altas nos Estados de Minas Gerais, Goiás, Mato Grosso, Rondônia, Pará, Roraima, Maranhão, Piauí e Tocantins.bitstream/CNPAF/23577/1/comt_114.pd
    corecore