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The sensitivity of biological materials to shear stress conditions

encountered during large-scale bioprocessing makes

successful scale up from the bench challenging. Ultra scale-

down technologies seek to use just millilitre quantities to

enhance our understanding of the impact of the process

environment as a basis for process optimisation. They can help

speed translation of new biological discoveries to market and

reduce risks encountered in scale up. They are important both

as process discovery tools and as preparative tools to yield

material for study of subsequent stages. In this review the focus

is on the early recovery stages post fermentation or cell culture

and in particular the use of continuous-flow and dead-end

centrifugation integrated with preparative stages (e.g.

flocculation) and subsequent depth filtration. Examples range

from therapeutic antibodies, to rationally engineered (synthetic

biology) host strains, to stem cells for therapy.
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Bench-scale technologies for application of
process-scale shear stress
All stages of an industrial sequence for the preparation of

a biological therapeutic involve exposure of the material

to various forms of stress, that is, mechanical or different

types of hydrodynamic stress. In this review we are

concerned with hydrodynamic stress as commonly occurs

during flow within and through process equipment. In

some cases the stress applied is similar at bench and

industrial scale but often the stress applied at full scale

far exceeds that at bench scale. Notable examples include

pump transfers (e.g. [1]), flow through valves, feed within
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continuous-flow high speed centrifuges [2] and the dis-

charge of supernatant and sediment phases [3]. There are

also examples of high stress occurring at bench scale not

reproduced at full scale, for example, flow through pip-

ettes [4�], mixing using surface mounted (grinding) mag-

netic stirrers.

A key objective of ultra scale-down technologies

(Figure 1) is to determine if the biological material is

susceptible to applied process shear stress, and if so to

quantify the effect of shear stress on the material and on

the performance of subsequent unit operations, for ex-

ample, filtration or chromatography. Two geometries are

commonly used at bench scale to expose process material

to hydrodynamic shear stress:

(a) Capillary flow — here, exposure to stress occurs on

entry to and exit from the capillary, flow through the

capillary and impact of the discharged jet on the

collection surface. The flow in the capillary pro-

gresses from undeveloped to laminar rather than

turbulent flow as opposed to turbulent flow in many

large-scale applications.

(b) Rotating disc flow — here, flow occurs over the

rotating disc surface housed within a chamber

(Figure 2). The greatest stress occurs at the disc

tip with both rotational flow and radial flow impacting

on the chamber surface. The flow is generally highly

turbulent but heterogeneous in nature.

Examples of materials studied include for capillary flow:

mammalian cells (e.g. [5�,6,7]) and cells for therapy [8,9];

and for rotational flow: precipitates (e.g. [10]), mammalian

cells (e.g. [11�]), cells for therapy (e.g. [12]), adjuvants

(e.g. [13]), flocs (e.g. [14]), phages (e.g. [15]) and anti-

bodies (e.g. [16,17]).

Bench-scale technologies for centrifuge ultra-
scale down
All bioprocess stages pose particular challenges in achiev-

ing successful scale-down in a conventional sense, that is,

maintaining geometric similarity. For example, for

packed bed chromatography the need to maintain the

same bed height and superficial velocity means that scale

down is ultimately limited by the column diameter be-

yond which it is necessary to reduce column height and

hence residence time for binding or superficial flow

velocity. Similarly for membrane separation when it is
www.sciencedirect.com
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The role of ultra scale-down in speeding bioprocess development.

Process characterisation is needed to evaluate manufacturability of a

new product or to evaluate the process impact of introducing a new

host, that is, through screening or rational engineering (synthetic

biology) approaches. (1) Specification of whole bioprocess from

fermentation/cell culture to formulation. (2) Identification and

characterisation of critical regimes, for example, of high shear stress,

long hold times, hostile interfaces, etc. (3) Use of ultra scale-down

methods to prepare material and for testing of sensitivity to critical

regimes and impact on rest of process. (4) Use of new insight to

respecify process sequence, for example, remove regimes resulting in

product damage. (5) With increased confidence in ability of ultra scale-

down methods to predict pilot and full-scale operations focus on

process refinement rather than process reinvention.
no longer possible to maintain the same membrane length

and hence profile of transmembrane pressure drops.

However, the translation from small (ca 10s mL) bench

scale (where scale down rules cannot be followed) to pilot

scale is eased by the availability of large (ca 100s mL)

capacity bench-scale devices which can keep to scale

down rules [18–20]. Such devices are not available for

pilot-scale continuous-flow centrifugation and, here, scale

down requires a major change in geometry for operation at

scales of less than 1000s mL.

The classical approach for scale down of full-scale (FS)

centrifugation is based on the definition of an equivalent

area of a gravity settling pond, SFS. Here, the geometry

and rotational speed of a centrifuge is used to compute

the settling of particles during suspension flow through
www.sciencedirect.com 
the centrifuge. A characteristic clarification performance

is used to define SFS for the centrifuge. This theoretical

analysis needs to be accompanied by an experimental

study to help characterise non-idealities in flow, for

example, due to turbulence or due to particle resuspen-

sion. Within this review this calibration factor is incorpo-

rated within the value of SFS. On this basis, the

centrifuge performance is simply characterised by the

ratio of flow rate, QFS, to settling area. While this does

not allow scaling based on dewatering or on sediment

capacity, it does provide a useful basis for clarification, the

main function of many centrifugation stages during re-

covery.

The translation from a full-scale continuous-flow centri-

fuge to a bench-scale batch test tube centrifuge is a

considerable challenge. The equivalent settling area,

SUSD, of a test tube housed in a centrifuge head is defined

in terms of the inner and outer radii of the suspension (R1

and R2) and the rotational speed, N, and using the same

separating criteria as for the full-scale centrifuge. The

suspension volume, VUSD, and the spin time, tUSD, give

the equivalent flow rate such that we have the following

expressions:

X
USD
¼ VUSDð2pNÞ2

6glnð2R2=ðR2 þ R1ÞÞ

S ¼ f
V USD

tUSDSUSD

� �
¼ f

QFS

SFS

� �

where S is solids remaining in supernatant. Typical values

of (VUSD/tUSDSUSD) range from 1 � 10�9 m3 m�2 s�1 to

mimic a high speed centrifuge operating at low flow rate

to 100 � 10�9 m3 m�2 s�1 to mimic a high speed centri-

fuge operating at high flow rate, the upper limit to recover

low density difference 0.1–100 mm sized biological par-

ticles. Typical values of SUSD are 0.01–0.5 m2, typical

values of SFS for pilot-scale centrifuges are 500–5000 m2.

Careful attention is needed to make sure the acceleration

and deceleration phases of bench-scale centrifuge opera-

tion do not unduly affect the extent of clarification (see

[21] for correction factors) and that supernatant withdrawal

does not lead to resuspension of the often loosely com-

pacted sediment [22]. However, the greatest challenge is

the nature of the feed to a continuous centrifuge and the

impact of process shear stress. Incoming material is subject

to considerable acceleration forces and estimated maxi-

mum energy dissipation rates range from 45 W/mL to

530 W/mL [2,14]. These are considerably higher stresses

than those which occur in preceding stages such as reactors

for cell growth, or for cell lysate, precipitate, floc or crystal

preparation and are probably of similar orders of magnitude

as occur in devices used for mechanical cell disruption

(high pressure or bead mill homogenisers). The design of
Current Opinion in Chemical Engineering 2016, 14:150–157
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Figure 2
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An ultra representation of energy dissipation rate a ratescale-down approach to investigating process material shear sensitivity at the laboratory

scale. This is achieved using a rotating disc device (kompAsTM) which produces defined levels of hydrodynamic shear stress (energy dissipation

rate: 1–1000 W mL�1), comparable to those found in industrial equipment such as centrifuges or pumps. The total volume of process material

required (20 mL) is sufficient for further studies such as USD centrifugation and/or USD filtration as well as analytical measurements of the product

and impurities. Note that the colour scale is a logarithmic representation of energy dissipation rate.
the feed zone to the centrifuge determines the level of

shear stress, for example, hermetic or hydrohermetic

designs to eliminate or minimise the air core in the entry

feed zone allow more gentle acceleration of the feed

suspension. It is important to determine if this is a critical

design feature for the material being processed as results of

primary recovery operation could vary [10,11�].

Other sources of stress can include the discharge of the

supernatant that can be via a centripetal pump into a pipe

or by high velocity flow over a weir into a capture vessel.

The discharge of the solids can either be via intermittent

high velocity nozzle discharge [3] or continuous nozzle

discharge at a velocity determined by the centrifuge

design, for example, discharge at the outer bowl [23] or

via the bowl axis with a relationship determined by the

extent of dewatering achieved [24,25]. The resuspension

of high viscosity sediment can also be a high stress process

especially via manual pipetting at bench scale [4�].

The relative importance of these various stress effects is

determined by the material being processed and the

product form/location, for example, supernatant or sedi-

ment and the place of the centrifuge operation in the

bioprocess sequence. At present, in the absence of a

generic design procedure, this is best studied via particu-

lar examples of process sequences.
Current Opinion in Chemical Engineering 2016, 14:150–157 
Ultra scale-down studies of bioprocess
sequences
A general overview of scale down of biochemical engi-

neering options has been provided elsewhere [26]; the

focus here is on use of ultra scale-down and the enhanced

bioprocess understanding which is gained in particular

downstream processing sequences in the early recovery

stages.

Interaction of homogenisation and centrifugation

One route for the recovery of intracellular products is via

high pressure homogenisation followed by centrifugal

removal of the cell debris. Adaptive focused acoustics

has been used to mimic the high pressure homogenisation

of recombinant Escherichia coli for the release of an anti-

body fragment and the formation of cell debris of specific

size distribution as well as the release and disruption of

nucleic acids [27]. A homogeniser operating on a recycle

loop followed by a disc stack centrifuge for debris removal

was successfully mimicked by a combination of bench-

scale adaptive focused acoustics and ultra scale-down

centrifugation (as described above) to demonstrate how

challenging is the removal of micronized cell debris

formed from the need for multiple recycles to achieve

near complete protein product release [28]. The impact

has also been demonstrated of cell wall weakening during

extended fermentation leading to reduced centrifuge
www.sciencedirect.com
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clarification performance [29]. Recently, synthetic biolo-

gy approaches have been studied using ultra scale-down

methods to rationally engineer cells with improved char-

acteristics for bioprocessing. In one example, the use of a

strain engineered with an inducible nuclease has been

shown using to enhance the processability of recombinant

E. coli homogenates [30]. Similarly, ultra scale-down

methods predicted the effect of the micellar state of

lipids and their removal to avoid fouling for hydrophobic

resins [31].

Interaction of flocculation, centrifugation and depth

filtration

Flocculation in this review relates to use of polymeric

reagents (e.g. polyethyleneimine (PEI) or polydiallyldi-

methylammonium chloride (PDADMAC)) for the selec-

tive precipitation (e.g. of nucleic acids) and aggregation

(e.g. of colloidal proteins, lipopolysaccharides, colloidal

proteins) of biological contaminants (e.g. [14,32,33–35]).

It is used in a process sequence to offer a rapid clean-up of

a complex bioprocess stream before progression to a

sensitive chromatographic or selective adsorption separa-

tion stage. The ultra scale-down of floc preparation fol-

lows the same rules as for a precipitate (see below) with

regards to mixing conditions and times. The ability to

work at small scale allows study of the effect of floc agent

properties (e.g. molecular weight, concentration, degree
Figure 3
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of molecular unravelling etc.), as well as sensitivity to

mixing conditions [36]. Key findings include the use of

flocculating agents to remove the presence of small (mi-

cron sized) particles to form large flocs that are sensitive to

the effects of shear stress. However, the micron sized

particles do not reappear and, because the particles re-

main well above the critical size for centrifugal removal,

high levels of clarification are achieved (Figure 3a). For

example, in one study combining ultra scale-down floc-

culation, shear stress and centrifugation the use of floc-

culation was predicted to reduce contaminant carry-over

by >50-fold [14] with greater ease of depth filtration of

the subsequent supernatant [14,37�]. This was then veri-

fied at pilot scale [14,32,37�]. Verification at pilot scale of

ultra scale-down predictions is critical to provide confi-

dence for design predictions and has been achieved for

other flocculated systems (e.g. [38]).

Interaction of precipitation and centrifugation

In the context of this review, precipitation is generally

achieved via a change in the process environment, for

example, pH, ionic strength, dielectric constant etc. or

combinations thereof. Precipitation continues to be ex-

plored to provide novel solutions to bioprocessing (e.g.

[39–41]). The product or the contaminants may be sub-

ject to precipitation and then generally removal/recovery

by centrifugation [21] or possibly filtration [20] especially
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g all sub-micron cell debris and also precipitating soluble

igh shear stress decreases the average particle size, there is no

s of high levels of clarification in continuous flow centrifugation [14]

of the application of shear stress (20 s) on mammalian cell broth will

Current Opinion in Chemical Engineering 2016, 14:150–157
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if the product remains in the soluble phase. The control of

the properties of the precipitate is achieved by the choice

of reactor conditions of the mean velocity gradient

(G = (P/Vm)0.5) where P is power dissipated in a volume,

V, with suspension viscosity, m, and residence time, t. The

precipitate particle size is generally inversely proportional

to G. The dimensionless Camp number (Ca = Gt) deter-

mines the strength of the precipitate with maximum

resistance to disruption to shear stress being observed

for Ca > 105 [42]. However, even after such ageing the

precipitate is still strongly susceptible to shear stress

induced break up, for example, in pumps or in centrifuge

feed zones. Examples of successful USD prediction of

precipitation and precipitate recovery by centrifugation

have been achieved, for example, salt precipitation of

microbial proteins or ethanol precipitation of blood plas-

ma proteins [10].

Interaction of suspension cell culture, harvest,

centrifugation and filtration

The production of monoclonal antibodies and other pro-

tein products via mammalian cell culture involves firstly a

sequence of solid-liquid separation stages to prepare a

clarified broth suitable for chromatographic or adsorption

based separation. The cells are cultured in a relatively low

shear stress environment and high levels of shear stress

may lead to considerable attrition (Figure 3b) and release

of intracellular components. The impact of such disrup-

tion on the centrifugal clarification of cell broth has been

studied with the use of a high stress feed zone predicted to

lead to over 10-fold increase in solids carryover compared

with no shear stress (Figure 4). The use of a low stress feed
Figure 4
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zone reduces such carryover very significantly

[11�,22,43,44] and using ultra scale-down filtration tools

[45–47] is shown to enhance the performance of subse-

quent filtrations stages [48]. The correct back pressuring of

a centrifuge to maintain a low shear stress (hydrohermetic)

feed zone may be defined as a Critical Process Parameter

when the validation of such a bioprocess is addressed. The

impact of such shear stress on the protein product might

need to be considered, for example, for a monoclonal

antibody no impact on glycosylation pattern was observed

but the presence of half antibodies increased [49] while for

a fusion protein a large impact on extent of glycosylation

was observed [50�]. Improvements in mammalian cell

biology have been predicted to be best realised by use

of low shear stress processing options [51]. The effect of

surface interactions under shear stress has been reported

for antibodies leading to loss of functionality in solutions

without the appropriate protective agents [16,17,52].

Interaction of surface-attached cell culture,

centrifugation and resuspension

The preparation of cells for therapy is one of the most

challenging areas in terms of understanding the impact of

the processing environment on the product [53]. For

allogeneic therapies, such as multi-potent adult stem cells

(MPACs), the scale of production is often near the limit of

analytical techniques so the challenge is to understand

the effect of the processing environment. For autologous

therapies, such as induced pluripotent stem cells (iPS

cells) or T-cells, there is also the challenge of scale-down.

As might be expected different cell lines respond very

differently to the application of process stress [12,54]
high shear feed

Low shear feed
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ation was used to predict the carryover of solids during clarification of

 in solids carryover was verified at pilot scale (SFS = �2500 m2,

entrifuge. The use of no shear bench-scale centrifugation significantly

 [11�]. Solid lines are fits by regression of the ultra scale-down data,

ar ultra scale-down data fits are transposed to show match with pilot-
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and for a particular cell line the cell passage number,

generation number and method of growth all affect the

response to shear stress [55]. Capillary based studies have

been used to reduce the number of cells required for

process characterisation [9]. As predicted [7,56,57] the

main reason for damage is due to extensional flow at

the capillary entrance but careful computational analysis

of the particle and fluid dynamics is needed to identify

regimes of exposure of cells to stress. The translation of

such results has led to an understanding of the reasons for

cell loss during operation of scale-down mimics of dead-

end centrifugation where the combination of pipette flow

velocities and sediment rheology [58] led to stresses

exceeding the predicted process stress for damage and

solutions to reduce such stress [4�]. Capillary flow has been

used to gain further understanding of the reasons for other

causes of cell damage [8,59]. Similar ultra scale-down tools

are needed to explore new options for cell recovery, for

example, cross flow filtration or expanded bed centrifuga-

tion [4�] and washing and administration.

Conclusions
An increasing number of stages in a bioprocess are becom-

ing accessible to investigation using ultra scale-down

methods, including continuous operations. This review

has focused on one of the major challenges for scale down,

that is, centrifugation, especially as a key stage between

cell culture/fermentation and chromatographic purifica-

tion. Examples are provided of the successful application

of ultra scale-down methods for a range of bioprocess

sequences.

The ability to complete ultra scale-down studies of whole

bioprocess sequences will allow low cost development of a

full-scale process while assurance is awaited of the clinical

safety and efficacy of the candidate therapy. Then it will

be possible to move at speed to large-scale manufacture.

As more complex therapies become the deliverable of

value, the use of ultra scale-down to help enhance process

development at low cost is likely to become increasingly

important. Ultra scale-down methods also provide a quan-

titative and predictive methodology by which to assess

the benefits of host cell engineering (synthetic biology)

on whole bioprocess performance.
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