We prove the existence of a non-ergodicity threshold for an anisotropic
classical Heisenberg model with all-to-all couplings. Below the threshold, the
energy surface is disconnected in two components with positive and negative
magnetizations respectively. Above, in a fully chaotic regime, magnetization
changes sign in a stochastic way and its behavior can be fully characterized by
an average magnetization reversal time. We show that statistical mechanics
predicts a phase--transition at an energy higher than the non-ergodicity
threshold. We assess the dynamical relevance of the latter for finite systems
through numerical simulations and analytical calculations. In particular, the
time scale for magnetic reversal diverges as a power law at the ergodicity
threshold with a size-dependent exponent, which could be a signature of the
phenomenon.Comment: 4 pages 4 figure