18 research outputs found

    Ultrasonographic, endoscopic and histological appearances of the caecum in cats presenting with chronic clinical signs of caecocolic disease

    No full text
    Objectives This study aimed to describe the ultrasonographic, endoscopic and histological characteristics of the caecum and ileocaecocolic junction in cats suffering from chronic clinical signs compatible with caecocolic disease. Methods Cats presenting with clinical signs suggestive of a caecocolic disease were prospectively recruited. All cats underwent an ultrasonographic examination of the caecum, ileum, colon, ileocolic lymph nodes and local mesenteric fat, in addition to comprehensive abdominal ultrasonography. This was followed by a colonoscopy with a macroscopic assessment of the caecocolic mucosa; caecocolic tissue samples were systematically collected for histologic analysis. Results Eighteen cats were included. Eleven of 18 cats had ultrasonographic abnormalities adjacent to the ileocaecocolic junction (lymphadenopathy, local steatitis) and 13/18 cats had abnormalities directly related to the junction (wall thickening, loss of wall layering). Seventeen of 18 cats had at least one ultrasonographic abnormality. Endoscopically, hyperaemia, oedema, discoloration and/or erosions were found in all cats. Each cat was classified as having mild or moderate-to-severe lesions according to endoscopic results; no classification could be established statistically for ultrasonographic results. The accentuation of the dimpled pattern tended to be inversely related to the severity of endoscopic lesion scoring. Histologically, a large proportion of cats showed typhlitis (13/16), one had lymphoma and two were normal. All cats with typhlitis also had colitis. There was only slight agreement between endoscopic and histological caecal results regarding the severity of lesions. Loss of caecal wall layering on ultrasound was found in 7/18 cats and, surprisingly, did not appear as a reliable predictor of the severity of inflammation or of malignancy; neither did local steatitis nor lymph node size. Conclusions and relevance Ultrasonography and endoscopy should not be used as the sole methods to investigate the ileocaecocolic region in cats with clinical signs suggestive of caecocolic disease. The presence of chronic clinical signs should routinely prompt histological biopsy

    Spontaneous mouse lymphoma in patient-derived tumor xenografts: The importance of systematic analysis of xenografted human tumor tissues in preclinical efficacy trials

    No full text
    Patient-derived tumor xenograft (PDX) is now largely recognized as a key preclinical model for cancer research, mimicking patient tumor phenotype and genotype. Immunodeficient mice, well-known to develop spontaneous lymphoma, are required for PDX growth. As for all animal models used for further clinical translation, a robust experimental design is strongly required to lead to conclusive results. Here we briefly report unintentional co-engraftment of mouse lymphoma during expansion of well-established PDXs to illustrate the importance of systematic check of the PDX identity to avoid misinterpretation. Besides, this quality control based on complementary approaches deserves a more detailed description in materials and methods section to ensure experimental validity and reproducibility

    Vandetanib as a potential new treatment for estrogen receptor-negative breast cancers

    No full text
    International audienceThe receptor tyrosine kinase RET is implicated in the progression of luminal breast cancers (BC) but its role in estrogen receptor (ER) negative tumors is unknown. Here we investigated the expression of RET in breast cancer patients tumors and patient-derived xenografts (PDX) and evaluated the therapeutic potential of Vandetanib, a tyrosin kinase inhibitor with strong activity against RET, EGFR and VEGFR2, in ER negative breast cancer PDX. The RT-PCR analysis of RET expression in breast tumors of 446 patients and 57 PDX, showed elevated levels of RET in ER+ and HER2+ subtypes and in a small subgroup of triple-negative breast cancers (TNBC). The activity of Vandetanib was tested in vivo in three PDX models of TNBC and one model of HER2+ BC with different expression levels of RET and EGFR. Vandetanib induced tumor regression in PDX models with high expression of RET or EGFR. The effect was associated with inhibition of RET/EGFR phosphorylation and MAP kinase pathway and increased necrosis. In a PDX model with no expression of RET nor EGFR, Vandetanib slowed tumor growth without inducing tumor regression. In addition, treatment by Vandetanib decreased expression of murine Vegf receptors and the endothelial marker Cd31 in the four PDX models tested, suggesting inhibition of tumor vascularization. In summary, these preclinical results suggest that Vandetanib treatment could be useful for patients with ER negative breast cancers overexpressing Vandetanib's main targets. What's new? Tyrosine kinase receptors have emerged as key targets in breast cancer treatment. Here the authors examine the role of REarranged during Transfection (RET) and epidermal growth factor receptor (EGFR) in estrogen receptor-negative breast cancers. They show tumor regression induced by the multikinase inhibitor Vandetanib in cancers with high expression of RET or EGFR. In two cohorts of primary breast cancer and patient-derived xenografts, one third of tumors showed expression of at least one of the two kinase receptors, underscoring Vandetanib's potential as an effective treatment option for estrogen receptor-negative breast cancers with high expression of RET or EGFR

    High‐Mobility Group Box 1–Signaling Inhibition With Glycyrrhizin Prevents Cerebral T‐Cell Infiltration After Cardiac Arrest

    No full text
    Background High‐mobility group box 1 (HMGB1) is a major promotor of ischemic injuries and aseptic inflammatory responses. We tested its inhibition on neurological outcome and systemic immune response after cardiac arrest (CA) in rabbits. Methods and Results After 10 minutes of ventricular fibrillation, rabbits were resuscitated and received saline (control) or the HMGB1 inhibitor glycyrrhizin. A sham group underwent a similar procedure without CA. After resuscitation, glycyrrhizin blunted the successive rises in HMGB1, interleukin‐6, and interleukin‐10 blood levels as compared with control. Blood counts of the different immune cell populations were not different in glycyrrhizin versus control. After animal awakening, neurological outcome was improved by glycyrrhizin versus control, regarding both clinical recovery and histopathological damages. This was associated with reduced cerebral CD4+ and CD8+ T‐cell infiltration beginning 2 hours after CA. Conversely, granulocytes' attraction or loss of microglial cells or cerebral monocytes were not modified by glycyrrhizin after CA. These modifications were not related to the blood–brain barrier preservation with glycyrrhizin versus control. Interestingly, the specific blockade of the HMGB1 receptor for advanced glycation end products by FPS‐ZM1 recapitulated the neuroprotective effects of glycyrrhizin. Conclusions Our findings support that the early inhibition of HMGB1‐signaling pathway prevents cerebral chemoattraction of T cells and neurological sequelae after CA. Glycyrrhizin could become a clinically relevant therapeutic target in this situation

    Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers

    No full text
    Triple-negative breast cancers (TNBC) are characterized by frequent alterations in the PI3K/AKT/mTOR signaling pathway. In this study, we analyzed PI3K pathway activation in 67 patient-derived xenografts (PDX) of breast cancer and investigated the anti-tumor activity of the mTOR inhibitor everolimus in 15 TNBC PDX with different expression and mutational status of PI3K pathway markers. Expression of the tumor suppressors PTEN and INPP4B was lost in 55% and 76% of TNBC PDX, respectively, while mutations in PIK3CA and AKT1 genes were rare. In 7 PDX treatment with everolimus resulted in a tumor growth inhibition higher than 50%, while 8 models were classified as low responder or resistant. Basal-like, LAR (Luminal AR), mesenchymal and HER2-enriched tumors were present in both responder and resistant groups, suggesting that tumor response to everolimus is not restricted to a specific TNBC subtype. Analysis of treated tumors showed a correlation between tumor response and post-treatment phosphorylation of AKT, increased in responder PDX, while PI3K pathway markers at baseline were not sufficient to predict everolimus response. In conclusion, targeting mTOR decreased tumor growth in 7 out of 15 TNBC PDX tested. Response to everolimus occurred in different TNBC subtypes and was associated with post-treatment increase of P-AKT

    The iron chelator deferasirox synergises with chemotherapy to treat triple-negative breast cancers

    No full text
    To ensure their high proliferation rate, tumor cells have an iron metabolic disorder causing them to have increased iron needs, making them more susceptible to iron deprivation. This vulnerability could be a therapeutic target. In breast cancers, the development of new therapeutic approaches is urgently needed for patients with triple-negative tumors, which frequently relapse after chemotherapy and suffer from a lack of targeted therapies. In this study, we demonstrated that deferasirox (DFX) synergises with standard chemotherapeutic agents such as doxorubicin, cisplatin and carboplatin to inhibit cell proliferation and induce apoptosis and autophagy in triple-negative breast cancer (TNBC) cells. Moreover, the combination of DFX with doxorubicin and cyclophosphamide delayed recurrences in breast cancer patient-derived xenografts without increasing the side-effects of chemotherapies alone or altering the global iron storage of mice. Antitumor synergy of DFX and doxorubicin seems to involve downregulation of the phosphoinositide 3-kinase and nuclear factor-kappa B pathways. Iron deprivation in combination with chemotherapy could thus help to improve the effectiveness of chemotherapy in TNBC patients without increasing toxicity

    Analysis of genomic and non-genomic signaling of estrogen receptor in PDX models of breast cancer treated with a combination of the PI3K inhibitor alpelisib (BYL719) and fulvestrant

    No full text
    International audienceAbstract Background Endocrine therapies targeting estrogen signaling have significantly improved breast cancer (BC) patient survival, although 40% of ERα-positive BCs do not respond to those therapies. Aside from genomic signaling, estrogen triggers non-genomic pathways by forming a complex containing methylERα/Src/PI3K, a hallmark of aggressiveness and resistance to tamoxifen. We aimed to confirm the prognostic value of this complex and investigated whether its targeting could improve tumor response in vivo. Methods The interaction of ERα/Src and ERα/PI3K was studied by proximity ligation assay (PLA) in a cohort of 440 BC patients. We then treated patient-derived BC xenografts (PDXs) with fulvestrant or the PI3K inhibitor alpelisib (BYL719) alone or in combination. We analyzed their anti-proliferative effects on 6 ERα+ and 3 ERα− PDX models. Genomic and non-genomic estrogen signaling were assessed by measuring ERα/PI3K interaction by PLA and the expression of estrogen target genes by RT-QPCR, respectively. Results We confirmed that ERα/Src and ERα/PI3K interactions were associated with a trend to poorer survival, the latter displaying the most significant effects. In ERα+ tumors, the combination of BYL719 and fulvestrant was more effective than fulvestrant alone in 3 models, irrespective of PI3K, PTEN status, or ERα/PI3K targeting. Remarkably, resistance to fulvestrant was associated with non-genomic ERα signaling, since genomic degradation of ERα was unaltered in these tumors, whereas the treatment did not diminish the level of ERα/PI3K interaction. Interestingly, in 2 ERα− models, fulvestrant alone impacted tumor growth, and this was associated with a decrease in ERα/PI3K interaction. Conclusions Our results demonstrate that ERα/PI3K may constitute a new prognostic marker, as well as a new target in BC. Indeed, resistance to fulvestrant in ERα+ tumors was associated with a lack of impairment of ERα/PI3K interaction in the cytoplasm. In addition, an efficient targeting of ERα/PI3K in ERα− tumors could constitute a promising therapeutic option

    Inhibiting Aurora Kinases Reduces Tumor Growth and Suppresses Tumor Recurrence after Chemotherapy in Patient-Derived Triple-Negative Breast Cancer Xenografts

    No full text
    International audienceTriple-negative breast cancers (TNBC) have an aggressive phenotype with a relatively high rate of recurrence and poor overall survival. To date, there is no approved targeted therapy for TNBCs. Aurora kinases act as regulators of mammalian cell division. They are important for cell-cycle progression and are frequently overexpressed or mutated in human tumors, including breast cancer. In this study, we investigated the therapeutic potential of targeting Aurora kinases in preclinical models of human breast cancers using a pan-inhibitor of Aurora kinases, AS703569. In vitro, AS703569 was tested in 15 human breast cancer cell lines. TNBC cell lines were more sensitive to AS703569 than were other types of breast cancer cells. Inhibition of proliferation was associated with cell-cycle arrest, aneuploidy, and apoptosis. In vivo, AS703569 administered alone significantly inhibited tumor growth in seven of 11 patient-derived breast cancer xenografts. Treatment with AS703569 was associated with a decrease of phospho-histone H3 expression. Finally, AS703569 combined to doxorubicin-cyclophosphamide significantly inhibited in vivo tumor recurrence, suggesting that Aurora kinase inhibitors could be used both in monotherapy and in combination settings. In conclusion, these data indicate that targeting Aurora kinases could represent a new effective approach for TNBC treatment. Mol Cancer Ther; 11(12); 2693-703. (C)2012 AACR
    corecore