12 research outputs found

    Two-phase flow expansion: Development of an innovative test-rig for flow characterisation and CFD validation

    Get PDF
    The aim of this work is to describe the design of an innovative test rig for investigating the expansion of saturated fluids in the two-phase region. The experimental test rig was thought up and built by TPG of the University of Genoa. It will be equipped by probes and some optical accesses that permit high speed video recording and laser measurements. It will be useful for the study of the quality ratio, vapour and liquid droplet thermodynamic properties and their speed

    New Alloying Systems for Sintered Steels: Critical Aspects of Sintering Behavior

    Get PDF
    Oxygen-sensitive alloying elements such as Mn, Si, and Cr have a high potential for improving the properties of low alloyed sintered steels while reducing the alloying cost. However, it is necessary to find a way for avoiding, or at least minimizing, the oxidation of these elements especially during the early stages of the sintering cycle. In this study Mn, Si, and Cr were introduced in the form of a master alloy powder designed to be mixed with the iron base powder and provide the final composition of the steel during the sintering process. The reduction/oxidation phenomena taking place during the heating stage were studied by thermogravimetry, dilatometry, and mass spectroscopy, using either reducing (H2) or inert (Ar) atmospheres. The results show how the difference in chemical activity between base iron powder and master alloy causes the so called "internal-getter" effect, by which the reduction of less stable iron oxides leads to oxidation of the elements with higher affinity for oxygen. This effect can be somehow minimized when sintering in H2, since the iron oxides are reduced at lower temperatures at which the reactivity of the elements in the master alloy is lower. However, H2 concentration in the processing atmosphere needs to be carefully adapted to the specific composition of the materials being processed in order to minimize decarburization by methane formation during sintering.Höganäs AB Sweden, financial support provided through the Höganäs Chair IVPublicad

    Application of thermal analysis techniques to study the oxidation/reduction phenomena during sintering of steels containing oxygen-sensitive alloying elements

    Get PDF
    The final publication is available at Springer via https://doi.org/10.1007/s10973-016-5508-5.For the consolidation of steel parts manufactured by powder metallurgy (PM) techniques, removal of the surface oxides covering metallic powder particles is a necessary prerequisite. In PM steels with conventional compositions, reduction of the oxides is easily achieved in traditional sintering furnaces. However, processing steels containing alloying elements with a high oxygen affinity represents a big challenge that requires a deeper understanding of the chemical processes occurring during sintering. In the present work, thermogravimetry analysis coupled with mass spectrometry is used to describe the oxidation/reduction phenomena that take place when sintering steel powders and how these processes are modified by the addition of admixed particles containing oxygen-sensitive elements. Carbothermal reduction processes are studied using pure oxides (Fe2O3, MnO2, Cr2O3 and SiO2) as well as water-atomized Fe powders mixed with small amounts—4 mass/%—of Cr, Mn and Si powders or Fe–Mn–Si–(Cr) master alloy powders. The results show that there is an oxygen transfer from the base iron particles to the oxidation-sensitive elements—“internal getter effect”—taking place mostly through the gas phase. Different alloying elements (Cr, Mn, Si) show different temperature ranges of susceptibility to oxidation. Combination of these oxygen-sensitive alloying elements in the form of a master alloy powder reduces their sensitivity to oxidation. Also, the use of master alloys promotes the concentration of the oxides on the surface of the alloying particles and not in the grain boundaries of the surrounding iron particles—as occurs when using Mn carriers—which should have a beneficial impact on the final mechanical performance.European Union Seventh Framework, People Programme (Marie Curie Actions) FP7/2007-2013911051

    Influence of the PM-Processing Route and Nitrogen Content on the Properties of Ni-Free Austenitic Stainless Steel

    Get PDF
    Ni-free austenitic steels alloyed with Cr and Mn are an alternative to conventional Ni-containing steels. Nitrogen alloying of these steel grades is beneficial for several reasons such as increased strength and corrosion resistance. Low solubility in liquid and δ-ferrite restricts the maximal N-content that can be achieved via conventional metallurgy. Higher contents can be alloyed by powder-metallurgical (PM) production via gas–solid interaction. The performance of sintered parts is determined by appropriate sintering parameters. Three major PM-processing routes, hot isostatic pressing, supersolidus liquid phase sintering (SLPS), and solid-state sintering, were performed to study the influence of PM-processing route and N-content on densification, fracture, and mechanical properties. Sintering routes are designed with the assistance of thermodynamic calculations, differential thermal analysis, and residual gas analysis. Fracture surfaces were studied by X-ray photoelectron spectroscopy, secondary electron microscopy, and energy dispersive X-ray spectroscopy. Tensile tests and X-ray diffraction were performed to study mechanical properties and austenite stability. This study demonstrates that SLPS process reaches high densification of the high-Mn-containing powder material while the desired N-contents were successfully alloyed via gas–solid interaction. Produced specimens show tensile strengths >1000\ua0MPa combined with strain to fracture of 60\ua0pct and thus overcome the other tested production routes as well as conventional stainless austenitic or martensitic grades
    corecore