14 research outputs found

    Differences in Arterial Occlusion Pressure of the Superficial Femoral Artery Between the Dominant and Non-Dominant Legs

    Get PDF
    The arterial occlusion pressure (AOP) is dependent on limb circumference. Previous research seldom reports the AOP of both limbs. PURPOSE: The purpose of this study was to compare the superficial femoral artery AOP measured in the dominant and non-dominant legs. METHODS: Ultrasound (GE LOGIQ) was used to detect blood flow through the superficial femoral artery of both legs in a random order in 20 males and 20 females. Circumference of the upper thigh, leg volume, and skinfold thickness were measured in both legs. Blood pressure was continuously monitored using a CNAP device. An inflatable cuff was placed around the upper thigh. The cuff was inflated to 50 mmHg and then inflated continuously (10 mmHg/10 s) until arterial blood flow and pulse waves were no longer detectable by the ultrasound. The AOP was then measured in the opposite leg. The AOP data were analyzed with a mixed model analysis of variance while maintaining a family-wise p-value of 0.05. RESULTS: In males, the AOP of the dominant (209.4 ± 29.4 mmHg) and non-dominant legs (206.8 ± 32.5 mmHg) were not significantly different (p=0.790). Likewise, in females the AOP of the dominant (212.3 ± 58.3 mmHg) and non-dominant legs (203.5 ± 50.9 mmHg) were not significantly different (p=0.386). When combining the data for males and females, the AOP of the dominant (210.9 ± 45.6 mmHg) and non-dominant legs (205.2 ± 40.7 mmHg) were not significantly different (p=0.412). Thigh circumference was the only variable that significantly (p=0.027) contributed to AOP. In both males and females, there were no differences in thigh skinfold thickness, circumference, and volume between the dominant and non-dominant legs. The dominant leg was larger in 24 (60%) of the subjects; the larger leg had a higher AOP in 19 (47.5%) of the subjects; and the dominant leg had a higher AOP in 26 (65%) of the subjects. Although the AOP between the dominant and nondominant legs was not statistically significant, the largest difference in AOP between the two legs was 124 mmHg. CONCLUSION: There were no significant differences in AOP of the superficial femoral artery between the dominant and non-dominant legs in either males or females. Because of the potentially larger differences in the AOP between the two legs, we recommend measuring the AOP in both limbs when using blood flow restriction during exercise

    Sex Differences in the Superficial Femoral Artery Occlusion Pressure

    Get PDF
    The measurement of arterial occlusion pressure (AOP) prior to the use of blood flow restriction during exercise is recommended. Not all previous studies that have included both male and female participants have reported sex differences in AOP. PURPOSE: The purpose of this study was to compare the superficial femoral artery AOP of the dominant and non-dominant legs between males and females. METHODS: Ultrasound (GE LOGIQ) was used to detect blood flow through the superficial femoral artery of both legs in a random order in 20 males and 20 females. Circumference of the upper thigh, leg volume, and skinfold thickness were measured in both legs. Blood pressure was continuously monitored using a CNAP device. An inflatable cuff was placed around the upper thigh. The cuff was inflated to 50 mmHg and then inflated continuously (10 mmHg/10 s) until arterial blood flow and pulse waves were no longer detectable by the ultrasound. The AOP was then measured in the opposite leg. The AOP data were analyzed with a mixed model analysis of variance while maintaining a family-wise p-value of 0.05. RESULTS: The AOP of the dominant leg in males (209.4 ± 29.4 mmHg) and females (212.3 ± 8.3 mmHg) were not significantly different (p=0.844). Likewise, the AOP of the non-dominant leg in males (206.8 ± 32.5 mmHg) was not significantly different (p=0.804) than the AOP in the non-dominant legs of females (203.5 ± 50.9 mmHg). When combining the data for the dominant and non-dominant legs, the average AOP for males (208.1 ± 30.6 mmHg) and females (207.9 ± 53.1 mmHg) were not significantly different (p=0.986). Thigh circumference was the only variable that significantly (p=0.027) contributed to AOP. On the average the thigh circumference in the dominant and non-dominant legs of males (59.6 ± 5.5; 59.2 ± 5.2 cm) was greater than that for females (56.0 ± 2.9; 55.6 ± 3.2 cm), respectively. There were no sex differences in thigh skinfold thickness or thigh volume between males and females in either the dominant or non-dominant legs. CONCLUSION: There were no significant differences in AOP of the superficial femoral artery of the dominant and non-dominant legs between males females despite males having larger legs. Factors other than limb circumference likely have a role in determining AOP

    Reliability of Arterial Occlusion Pressure Measurements Using Two Different Cuff Inflation Protocols

    Get PDF
    Although previous studies have used two different cuff inflation protocols to measure AOP, no studies have reported the reliability of AOP measurements using both protocols. PURPOSE: The purpose of this study was to evaluate the reliability of two measurements of AOP in the superficial femoral artery using two different cuff inflation protocols. METHODS: Ultrasound (GE LOGIQ) was used to detect blood flow through the superficial femoral artery of both legs in 20 males and 20 females. The AOP of the artery was measured twice in each leg. The artery was occluded using a continuous (CONT) cuff inflation protocol in one leg and an increment (INCR) cuff inflation protocol in the opposite leg. The CONT protocol involved inflating the cuff to 50 mmHg then continuously inflating the cuff at a rate of 10 mmHg/10 s until blood flow could no longer be detected using the ultrasound. The INCR protocol involved initially inflating the cuff to 50 mmHg for 30 s, and then deflating the cuff for 10 s. The cuff was then inflated incrementally with each subsequent inflation increasing by 30 mmHg for 30 s followed by deflating the cuff for 10 s. Once blood flow was occluded, cuff pressure was decreased in increments of 10 mmHg until there was evidence of blood flow. The cuff was then gradually inflated until blood flow was no longer detected. The pressure at which blood flow could no longer be detected was recorded as the AOP. The data were analyzed with a mixed model analysis of variance while maintaining a family-wise p-value of 0.05. RESULTS: The difference in the two measurements of AOP using the CONT and INCR cuff inflation protocols in males (0.9 ± 5.4 and 0.5 ± 5.1 mmHg) and females (1.9 ± 11.4 and 2.3 ± 12.2 mmHg), or when combining the data from males and females (0.4 ± 8.9 and 0.9 ± 9.3 mmHg), respectively, were not statistically significant. The correlations between the two measurements of AOP using the CONT and INCR cuff inflation protocols all exceeded 0.99. CONCLUSION: Measurements of AOP using a continuous or increment cuff inflation protocol are highly reliable. Either cuff inflation protocol can be used when making multiple measurements of AOP

    Differences in Arterial Occlusion Pressure as Measured using Ultrasound and a Hand-Held Doppler Device

    Get PDF
    In the research lab and clinical settings, expensive ultrasound machines are used to measure arterial occlusion pressure (AOP) prior to the use of blood flow restriction during exercise. Alternatively, inexpensive hand-held Doppler ultrasound devices may be used to measure AOP in various applications and settings. PURPOSE: The purpose of this study was to compare the superficial femoral artery AOP as measured using ultrasound and a hand-held Doppler device. METHODS: Participants included 20 males and 20 females. An inflatable cuff was placed on the upper thigh. The superficial femoral artery was occluded by inflating the cuff to 50 mmHg then continuously inflating the cuff at a rate of 10 mmHg/10 s. A GE LOGIQ ultrasound was used to detect blood flow in the superficial femoral artery just below the cuff. A hand-held Doppler device was used simultaneously to detect blood flow (pulse waves) at the anterior medial malleolar artery of the ankle. The pressure at which blood flow could no longer be detected using the ultrasound and the hand-held Doppler were recorded as the AOP. The measurement of AOP using both devices simultaneously was performed on both legs in a random order. The data were analyzed with a mixed model analysis of variance while maintaining a family-wise p-value of 0.05. RESULTS: On the average, the AOP measured using the hand-held Doppler device was significantly (pCONCLUSION:Although the differences in the AOP measured using the Ultrasound and the hand-held Doppler in both legs in males and females was statistically significant, for all practical purposes, the small differences were of not practical importance. In settings in which blood flow restriction during exercise is employed, a hand-held Doppler device is a viable alternative to using expensive ultrasound machines to measure AOP

    Differences in Arterial Occlusion Pressure Using Two Different Cuff Inflation Protocols

    Get PDF
    The occlusion pressure used during blood flow restriction during exercise is based on the arterial occlusion pressure (AOP). Although previous studies have measured AOP using two different cuff inflation protocols, no studies have compared the AOP measured using both protocols. PURPOSE: The purpose of this study was to compare the superficial femoral artery AOP when measured using two different cuff inflation protocols. METHODS: Ultrasound (GE LOGIQ) was used to detect blood flow through the superficial femoral artery of both legs in 20 males and 20 females. An inflatable cuff was placed on the upper thigh. The superficial femoral artery was occluded using two different cuff inflation protocols in a random order in both legs. The continuous (CONT) protocol involved inflating the cuff to 50 mmHg then continuously inflating the cuff at a rate of 10 mmHg/10 s until blood flow could no longer be detected using the ultrasound. The incremental (INCR) protocol involved inflating the cuff to 50 mmHg for 30 s, and then deflating the cuff for 10 s. The cuff was then inflated incrementally with each subsequent inflation increasing by 30 mmHg for 30 s followed by deflating the cuff for 10 s. Once blood flow was occluded, cuff pressure was decreased in increments of 10 mmHg until there was evidence of blood flow. The cuff was then gradually inflated until blood flow was no longer detected. RESULTS: In males, the AOP measured in the dominant (209.4 ± 29.4; 208.2 ± 27.1) and non-dominant (206.8 ± 32.5; 206.2 ± 32.7) legs using the CONT and INCR cuff inflation protocols, respectively, were not significantly different (p\u3e0.05). Likewise, in females the AOP measured in the dominant (212.3 ± 58.3; 213.7 ± 53.9) and non-dominant (203.5 ± 50.9; 207.0 ± 50.2) legs using the CONT and INCR protocol, respectively, were not significantly different (p\u3e0.05). When combining male and female data, there were no significant differences in the AOP between the CONT and INCR cuff inflation protocols in either leg or when combining legs. CONCLUSION: Using a continuous or incremental protocol for occluding the superficial femoral artery resulted in similar AOP values. Either protocol can be used in future research as well as in settings where AOP is determined prior to the use of blood flow restriction during exercise

    Measuring Brachial Artery Occlusion Pressure Using a Hand-held Doppler and Pulse Oximeter

    Get PDF
    The measurement of arterial occlusion pressure (AOP) is recommended for the safe and effective use of blood flow restriction (BFR) during training. PURPOSE: This study compared measurements of brachial artery AOP using Doppler ultrasound (US), a hand-held Doppler (HHDOP) and a pulse oximeter (PO). METHODS: The AOP of the brachial artery was measured simultaneously using US, HHDOP, and a PO in the dominant arm of males (n=36) and females (n=49). The blood flow restriction cuff was inflated using a continuous cuff inflation protocol. RESULTS: A mixed model ANOVA revealed small but significant (p \u3c 0.05) overall main effects (combined males and females) between AOP measured using US (119.8 ± 13.2 mmHg), HHDOP (119.1 ± 13.1 mmHg) and PO (118.0 ±13.2 mmHg), and between males (125.3 ± 13.1 mmHg) and females (114.3 ± 11.1 mmHg). The differences in AOP between males and females was consistent across all three methods of measuring AOP (US, HHDP, PO) and may be attributed to sex differences in limb circumference and systolic blood pressure. The small overall difference between US and HHDOP (0.74 ± 2.7 mmHg) was not significant but the difference between US and PO (1.81 ± 3.3 mmHg) measures of AOP was significant (

    Measurements of Arterial Occlusion Pressure Using Hand-held Devices

    Get PDF
    Use of blood flow restriction (BFR) during training has become increasingly popular due to the benefits over a wide range of applications. An essential component to the safe and effective use of BFR is the measurement of arterial occlusion pressure (AOP). PURPOSE: This study compared measures of AOP of the brachial artery using three devices and two cuff inflation methods. METHODS: Brachial artery AOP was measured in 20 males and 21 females simultaneously using Doppler ultrasound (US), a handheld Doppler (HHDOP) and a pulse oximeter (PO) once when inflating the cuff with a clinical grade Hokanson (HOK) rapid cuff inflation system and twice manually (MAN) with a sphygmomanometer. RESULTS: A mixed model ANOVA revealed small but significant (p \u3c 0.05) overall main effects between AOP measured using the HOK (120.4 ± 1.98) and MAN (122.2 ± 2.0) cuff inflation methods, between US (122.0 ± 1.97), HHDOP (121.6 ± 2.0) and PO (120.5 ± 2.0) measurements of AOP, and between males (127.6 ± 2.83) and females (115.2 ± 2.7). Further analyses indicated that the small overall difference between US and PO (1.56 ± 0.52) measures of AOP was significant (pp\u3e0.05). Trial-to-trial variance in measures of AOP using US, HHDOP and PO were negligible. Bland-Altman plots revealed reasonable limits of agreement for both HHDOP (±4.46 mmHg) and PO (±5.47 mmHg) measures of AOP. CONCLUSIONS: The small differences in US, HHDOP and PO measures of AOP measurements using HOK and MAN cuff inflation methods are of little practical significance. Manual inflation of the pressure cuff provides comparable AOP values compared to when using a clinical grade cuff inflation system. Practitioners can be confident in measures of AOP using a quality hand-held doppler or pulse oximeter prior to blood flow restriction training

    Use of a handheld Doppler to measure brachial and femoral artery occlusion pressure

    Get PDF
    Objective: Measurement of arterial occlusion pressure (AOP) is essential to the safe and effective use of blood flow restriction during exercise. Use of a Doppler ultrasound (US) is the “gold standard” method to measure AOP. Validation of a handheld Doppler (HHDOP) device to measure AOP could make the measurement of AOP more accessible to practitioners in the field. The purpose of this study was to determine the accuracy of AOP measurements of the brachial and femoral arteries using an HHDOP.Methods: We simultaneously measured AOP using a “gold standard” US and a HHDOP in the dominant and non-dominant arms (15 males; 15 females) and legs (15 males; 15 females).Results: There were no differences in limb circumference or limb volume in the dominant and non-dominant arms and legs between males and females or between the dominant and non-dominant arms and legs of males and females. The differences between US and HHDOP measures of AOP in the dominant and non-dominant arms and legs were either not significant or small (<10 mmHg) and of little practical importance. There were no sex differences in AOP measurements of the femoral artery (p > 0.60). Bland–Altman analysis yielded an average bias (−0.65 mmHg; −2.93 mmHg) and reasonable limits of agreement (±5.56 mmHg; ±5.58 mmHg) between US and HHDOP measures of brachial and femoral artery AOP, respectively.Conclusion: HHDOP yielded acceptable measures of AOP of the brachial and femoral arteries and can be used to measure AOP by practitioners for the safe and effective use of blood flow restriction. Due to the potential differences in AOP between dominant and non-dominant limbs, AOP should be measured in each limb

    Comparison of Two Cuff Inflation Protocols to Measure Arterial Occlusion Pressure in Males and Females

    No full text
    We measured the arterial occlusion pressure (AOP) in the dominant (DOM) and non-dominant (NDOM) legs of males (n = 20) and females (n = 20), 19–26 years of age, using a continuous (CONT) and incremental (INCR) cuff inflation protocol. ANOVA revealed no significant differences in AOP within (<1 mmHg; p > 0.493) or between (<6 mmHg; p > 0.418) the DOM and NDOM legs in males or females with either CONT or INCR. There were no significant sex differences in AOP in the DOM or NDOM legs when using CONT (<3 mmHg; p > 0.838) or INCR (<3 mmHg; p > 0.856). Measures of AOP are highly reliable, as evidenced by correlation coefficients >0.96 and small mean differences (<1.5 mmHg) between repeated measures. The choice of which cuff inflation protocol to use is one of personal preference. The AOP is not always greater in the dominant or larger leg. Although mean differences in AOP between the two legs was small, actual differences of over 100 mmHg could lead to unsafe and ineffective cuff inflation pressures during BFR if AOP is measured in only one leg. Further investigation of factors that explain difference in AOP between legs and between males and females is warranted. To ensure safe and effective use of BFR during exercise, AOP of both limbs should be measured regularly

    Table2_Use of a handheld Doppler to measure brachial and femoral artery occlusion pressure.DOCX

    No full text
    Objective: Measurement of arterial occlusion pressure (AOP) is essential to the safe and effective use of blood flow restriction during exercise. Use of a Doppler ultrasound (US) is the “gold standard” method to measure AOP. Validation of a handheld Doppler (HHDOP) device to measure AOP could make the measurement of AOP more accessible to practitioners in the field. The purpose of this study was to determine the accuracy of AOP measurements of the brachial and femoral arteries using an HHDOP.Methods: We simultaneously measured AOP using a “gold standard” US and a HHDOP in the dominant and non-dominant arms (15 males; 15 females) and legs (15 males; 15 females).Results: There were no differences in limb circumference or limb volume in the dominant and non-dominant arms and legs between males and females or between the dominant and non-dominant arms and legs of males and females. The differences between US and HHDOP measures of AOP in the dominant and non-dominant arms and legs were either not significant or small ( 0.60). Bland–Altman analysis yielded an average bias (−0.65 mmHg; −2.93 mmHg) and reasonable limits of agreement (±5.56 mmHg; ±5.58 mmHg) between US and HHDOP measures of brachial and femoral artery AOP, respectively.Conclusion: HHDOP yielded acceptable measures of AOP of the brachial and femoral arteries and can be used to measure AOP by practitioners for the safe and effective use of blood flow restriction. Due to the potential differences in AOP between dominant and non-dominant limbs, AOP should be measured in each limb.</p
    corecore