7,352 research outputs found
Neural Networks for Modeling and Control of Particle Accelerators
We describe some of the challenges of particle accelerator control, highlight
recent advances in neural network techniques, discuss some promising avenues
for incorporating neural networks into particle accelerator control systems,
and describe a neural network-based control system that is being developed for
resonance control of an RF electron gun at the Fermilab Accelerator Science and
Technology (FAST) facility, including initial experimental results from a
benchmark controller.Comment: 21 p
Gravitationally Collapsing Shells in (2+1) Dimensions
We study gravitationally collapsing models of pressureless dust, fluids with
pressure, and the generalized Chaplygin gas (GCG) shell in (2+1)-dimensional
spacetimes. Various collapse scenarios are investigated under a variety of the
background configurations such as anti-de Sitter(AdS) black hole, de Sitter
(dS) space, flat and AdS space with a conical deficit. As with the case of a
disk of dust, we find that the collapse of a dust shell coincides with the
Oppenheimer-Snyder type collapse to a black hole provided the initial density
is sufficiently large. We also find -- for all types of shell -- that collapse
to a naked singularity is possible under a broad variety of initial conditions.
For shells with pressure this singularity can occur for a finite radius of the
shell. We also find that GCG shells exhibit diverse collapse scenarios, which
can be easily demonstrated by an effective potential analysis.Comment: 27 pages, Latex, 11 figures, typos corrected, references added, minor
amendments in introduction and conclusion introd
Randomly Broken Nuclei and Disordered Systems
Similarities between models of fragmenting nuclei and disordered systems in
condensed matter suggest corresponding methods. Several theoretical models of
fragmentation investigated in this fashion show marked differences, indicating
possible new methods for distinguishing models using yield data. Applying
nuclear methods to disordered systems also yields interesting results.Comment: 10 pages, 4 figure
A search for rapidly pulsating hot subdwarf stars in the GALEX survey
NASA's Galaxy Evolution Explorer (GALEX) provided near- and far-UV
observations for approximately 77 percent of the sky over a ten-year period;
however, the data reduction pipeline initially only released single NUV and FUV
images to the community. The recently released Python module gPhoton changes
this, allowing calibrated time-series aperture photometry to be extracted
easily from the raw GALEX data set. Here we use gPhoton to generate light
curves for all hot subdwarf B (sdB) stars that were observed by GALEX, with the
intention of identifying short-period, p-mode pulsations. We find that the
spacecraft's short visit durations, uneven gaps between visits, and dither
pattern make the detection of hot subdwarf pulsations difficult. Nonetheless,
we detect UV variations in four previously known pulsating targets and report
their UV pulsation amplitudes and frequencies. Additionally, we find that
several other sdB targets not previously known to vary show promising signals
in their periodograms. Using optical follow-up photometry with the Skynet
Robotic Telescope Network, we confirm p-mode pulsations in one of these
targets, LAMOST J082517.99+113106.3, and report it as the most recent addition
to the sdBVr class of variable stars.Comment: 11 Pages, 8 Figures, Accepted for publication in the Astrophysical
Journa
Studies in the statistical and thermal properties of hadronic matter under some extreme conditions
The thermal and statistical properties of hadronic matter under some extreme
conditions are investigated using an exactly solvable canonical ensemble model.
A unified model describing both the fragmentation of nuclei and the thermal
properties of hadronic matter is developed. Simple expressions are obtained for
quantities such as the hadronic equation of state, specific heat,
compressibility, entropy, and excitation energy as a function of temperature
and density. These expressions encompass the fermionic aspect of nucleons, such
as degeneracy pressure and Fermi energy at low temperatures and the ideal gas
laws at high temperatures and low density. Expressions are developed which
connect these two extremes with behavior that resembles an ideal Bose gas with
its associated Bose condensation. In the thermodynamic limit, an infinite
cluster exists below a certain critical condition in a manner similar to the
sudden appearance of the infinite cluster in percolation theory. The importance
of multiplicity fluctuations is discussed and some recent data from the EOS
collaboration on critical point behavior of nuclei can be accounted for using
simple expressions obtained from the model.Comment: 22 pages, revtex, includes 6 figures, submitted to Phys. Rev.
Magnetometry via a double-pass continuous quantum measurement of atomic spin
We argue that it is possible in principle to reduce the uncertainty of an
atomic magnetometer by double-passing a far-detuned laser field through the
atomic sample as it undergoes Larmor precession. Numerical simulations of the
quantum Fisher information suggest that, despite the lack of explicit
multi-body coupling terms in the system's magnetic Hamiltonian, the parameter
estimation uncertainty in such a physical setup scales better than the
conventional Heisenberg uncertainty limit over a specified but arbitrary range
of particle number N. Using the methods of quantum stochastic calculus and
filtering theory, we demonstrate numerically an explicit parameter estimator
(called a quantum particle filter) whose observed scaling follows that of our
calculated quantum Fisher information. Moreover, the quantum particle filter
quantitatively surpasses the uncertainty limit calculated from the quantum
Cramer-Rao inequality based on a magnetic coupling Hamiltonian with only
single-body operators. We also show that a quantum Kalman filter is
insufficient to obtain super-Heisenberg scaling, and present evidence that such
scaling necessitates going beyond the manifold of Gaussian atomic states.Comment: 17 pages, updated to match print versio
- …
