7 research outputs found
Recommended from our members
Beyond rates: time-varying dynamics of high frequency oscillations as a biomarker of the seizure onset zone
Objective. High frequency oscillations (HFOs) recorded by intracranial electrodes have generated excitement for their potential to help localize epileptic tissue for surgical resection. However, the number of HFOs per minute (i.e. the HFO 'rate') is not stable over the duration of intracranial recordings; for example, the rate of HFOs increases during periods of slow-wave sleep. Moreover, HFOs that are predictive of epileptic tissue may occur in oscillatory patterns due to phase coupling with lower frequencies. Therefore, we sought to further characterize between-seizure (i.e. 'interictal') HFO dynamics both within and outside the seizure onset zone (SOZ).Approach. Using long-term intracranial EEG (mean duration 10.3 h) from 16 patients, we automatically detected HFOs using a new algorithm. We then fit a hierarchical negative binomial model to the HFO counts. To account for differences in HFO dynamics and rates between sleep and wakefulness, we also fit a mixture model to the same data that included the ability to switch between two discrete brain states that were automatically determined during the fitting process. The ability to predict the SOZ by model parameters describing HFO dynamics (i.e. clumping coefficients and coefficients of variation) was assessed using receiver operating characteristic curves.Main results. Parameters that described HFO dynamics were predictive of SOZ. In fact, these parameters were found to be more consistently predictive than HFO rate. Using concurrent scalp EEG in two patients, we show that the model-found brain states corresponded to (1) non-REM sleep and (2) awake and rapid eye movement sleep. However the brain state most likely corresponding to slow-wave sleep in the second model improved SOZ prediction compared to the first model for only some patients.Significance. This work suggests that delineation of SOZ with interictal data can be improved by the inclusion of time-varying HFO dynamics
A Simple Statistical Method for the Automatic Detection of Ripples in Human Intracranial EEG
High frequency oscillations (HFOs) are a promising biomarker of epileptic tissue, but detection of these electrographic events remains a challenge. Automatic detectors show encouraging results, but they typically require optimization of multiple parameters, which is a barrier to good performance and broad applicability. We therefore propose a new automatic HFO detection algorithm, focusing on simplicity and ease of implementation. It requires tuning of only an amplitude threshold, which can be determined by an iterative process or directly calculated from statistics of the rectified filtered data (i.e. mean plus standard deviation). The iterative approach uses an estimate of the amplitude probability distribution of the background activity to calculate the optimum threshold for identification of transient high amplitude events. We tested both the iterative and non-iterative approaches using a dataset of visually marked HFOs, and we compared the performance to a commonly used detector based on the root-mean-square. When the threshold was optimized for individual channels via ROC curve, all three methods were comparable. The iterative detector achieved a sensitivity of 99.6%, false positive rate (FPR) of 1.1%, and false detection rate (FDR) of 37.3%. However, in an eight-fold cross-validation test, the iterative method had better sensitivity than the other two methods (80.0% compared to 64.4 and 65.8%), with FPR and FDR of 1.3, and 49.4%, respectively. The simplicity of this algorithm, with only a single parameter, will enable consistent application of automatic detection across research centers and recording modalities, and it may therefore be a powerful tool for the assessment and localization of epileptic activity
Recommended from our members
A Simple Statistical Method for the Automatic Detection of Ripples in Human Intracranial EEG.
High frequency oscillations (HFOs) are a promising biomarker of epileptic tissue, but detection of these electrographic events remains a challenge. Automatic detectors show encouraging results, but they typically require optimization of multiple parameters, which is a barrier to good performance and broad applicability. We therefore propose a new automatic HFO detection algorithm, focusing on simplicity and ease of implementation. It requires tuning of only an amplitude threshold, which can be determined by an iterative process or directly calculated from statistics of the rectified filtered data (i.e. mean plus standard deviation). The iterative approach uses an estimate of the amplitude probability distribution of the background activity to calculate the optimum threshold for identification of transient high amplitude events. We tested both the iterative and non-iterative approaches using a dataset of visually marked HFOs, and we compared the performance to a commonly used detector based on the root-mean-square. When the threshold was optimized for individual channels via ROC curve, all three methods were comparable. The iterative detector achieved a sensitivity of 99.6%, false positive rate (FPR) of 1.1%, and false detection rate (FDR) of 37.3%. However, in an eight-fold cross-validation test, the iterative method had better sensitivity than the other two methods (80.0% compared to 64.4 and 65.8%), with FPR and FDR of 1.3, and 49.4%, respectively. The simplicity of this algorithm, with only a single parameter, will enable consistent application of automatic detection across research centers and recording modalities, and it may therefore be a powerful tool for the assessment and localization of epileptic activity