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Abstract
Objective. High frequency oscillations (HFOs) recorded by intracranial electrodes have generated
excitement for their potential to help localize epileptic tissue for surgical resection. However, the
number of HFOs per minute (i.e. the HFO ‘rate’) is not stable over the duration of intracranial
recordings; for example, the rate of HFOs increases during periods of slow-wave sleep. Moreover,
HFOs that are predictive of epileptic tissue may occur in oscillatory patterns due to phase coupling
with lower frequencies. Therefore, we sought to further characterize between-seizure (i.e.
‘interictal’) HFO dynamics both within and outside the seizure onset zone (SOZ). Approach. Using
long-term intracranial EEG (mean duration 10.3 h) from 16 patients, we automatically detected
HFOs using a new algorithm. We then fit a hierarchical negative binomial model to the HFO
counts. To account for differences in HFO dynamics and rates between sleep and wakefulness, we
also fit a mixture model to the same data that included the ability to switch between two discrete
brain states that were automatically determined during the fitting process. The ability to predict the
SOZ by model parameters describing HFO dynamics (i.e. clumping coefficients and coefficients of
variation) was assessed using receiver operating characteristic curves.Main results. Parameters that
described HFO dynamics were predictive of SOZ. In fact, these parameters were found to be more
consistently predictive than HFO rate. Using concurrent scalp EEG in two patients, we show that
the model-found brain states corresponded to (1) non-REM sleep and (2) awake and rapid eye
movement sleep. However the brain state most likely corresponding to slow-wave sleep in the
second model improved SOZ prediction compared to the first model for only some patients.
Significance. This work suggests that delineation of SOZ with interictal data can be improved by the
inclusion of time-varying HFO dynamics.

1. Novelty and significance

The rate of high frequency oscillations (HFOs),meas-
ured as number per minute, is a biomarker of the
seizure onset zone (SOZ) in epilepsy patients. How-
ever, the rate changes over time and HFO occurrence

can be phase-coupled to slow oscillations. Here we
show, through novel application of negative bino-
mial models to HFO count data, that HFO temporal
dynamics are a biomarker of the SOZ and are super-
ior to HFO rate. Specifically, more random occur-
rence of HFOs predicted SOZ, as opposed to events
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clustered in time. This suggests that consideration of
HFO temporal dynamics can improve SOZ localiza-
tion for epilepsy surgery.

2. Introduction

Epilepsy is prevalent across the globe. For example,
1.2% of the population of the United States in 2015
were reported to have epilepsy (Zack and Kobau
2017). Of this multitude, about 30% to 40% have
seizures that cannot be controlled by antiseizuremed-
ication (Kwan and Brodie 2000, Engel 2018). In such
cases of drug-resistant epilepsy, seizures can greatly
decrease the patient’s quality of life. However, surgical
interventions such as resection of seizure-generating
tissue and implantation of responsive neurostimu-
lators (RNS) are procedures that can greatly reduce
or eradicate the occurrence of seizures (Engel 2018).
The goal of epilepsy surgery is to identify and treat
the epileptogenic zone (EZ), typically defined as the
minimum amount of tissue that must be surgically
removed or stimulated to achieve a seizure free out-
come (Rosenow and Lüders 2001, Kovac et al 2017).
However, the EZ is a theoretical construct, and no
biomarkers exist that can accurately and consistently
identify the EZ (Ryvlin et al 2014). One method to
approximate the EZ is to use intracranial electro-
encephalography (iEEG) to localize the SOZ (Kovac
et al 2017), and the SOZ is then used in conjunction
with other imaging and test results to select brain tis-
sue for treatment (e.g. Tomás et al 2019). While sur-
gery often results in a reduction of seizures, many
patients will not be seizure free, indicating that there
is a need formore accuratemethods of identifying the
EZ (Noachtar and Borggraefe 2009). Such improve-
ments would allow more patients to benefit from
this procedure, with fewer side effects from the sur-
gery and better outcomes (especially those with epi-
lepsy outside of the temporal lobe with normal MRIs;
Cohen-Gadol et al 2006, Noe et al 2013).

High frequency oscillations (HFOs) have shown
promise as a novel marker of the EZ. Specifically,
increased incidence (i.e. increased ‘rate’ per minute)
of transitory HFOs (Bragin et al 1999, 2002) is
thought to be indicative of the EZ (Jacobs et al 2008,
2010, Frauscher et al 2017). HFOs are ‘transitory,’ as
they are defined as temporally isolated events that last
less than 200 ms with 3 or more cycles (i.e. 6 posit-
ive and negative local peaks in the waveform; Staba
et al 2002, Jacobs et al 2008, Charupanit and Lopour
2017). HFOs are often subcategorized as ripple band
(80–250 Hz) and fast ripple band (250–500 Hz)
events, and unsupervised analysis of high frequency
data has produced evidence for these two HFO sub-
types (see Blanco et al 2010). These waveforms are
thought to be generated by synchronous population
firing and/or synchronous postsynaptic activity in the
brain, although there is an abundance of possible

neural mechanisms and cortical circuits that could
generate HFOs (Köhling and Staley 2011, Staba and
Bragin 2011, Jefferys et al 2012).

Research has further sought to differentiate patho-
logical HFOs, occurring in the EZ, from physiological
HFOs, which can occur across the brain due to nor-
mal neural processes. The difficulty in differentiat-
ing pathological HFOs fromnormal brain activity has
been a barrier to the use of HFOs in modern clin-
ical practice (Jacobs et al 2018, Fedele et al 2019). For
example, even though high rates of HFOs are typ-
ically thought to be indicative of the SOZ, baseline
rates of HFOs outside the SOZ vary across different
regions of the cortex (Frauscher et al 2018, Guragain
et al 2018). Pathological and physiological HFOs are
also affected by the sleep state of the patient, andHFO
rates during slowwave sleep (i.e. non-rapid eyemove-
ment;NREMsleep) are thought to bemore differenti-
ating of pathological versus physiological brain activ-
ity (Dümpelmann et al 2015, von Ellenrieder et al
2016, 2017). Fast ripples are generally more localized
to SOZ than ripples (although see Jacobs et al 2018,
King-Stephens 2019), but they occur less frequently
and may not be recorded in all patients (Köhling and
Staley 2011, Roehri et al 2018). Roehri et al (2018)
show that HFOs are not more predictive of SOZ
than pathological epileptiform discharges, although
the co-occurrence of both is most predictive. Gliske
et al (2018) found that ripples during NREM sleep
are only predictive of SOZ in some patients, and that
HFO sources were highly variable over time. This led
Gliske et al (2018) to make the argument that long
recordings over multiple days must be performed in
order to accurately measure interictal, ripple-band
HFO dynamics.

Analyses of phase-amplitude coupling in iEEG
suggest that the temporal dynamics of HFOs and
the precise timing of their occurrence may be an
important marker of epileptogenic tissue. Coupling
of ripple-bandHFOs to slowwaves has been observed
during preictal and seizure periods (Weiss et al 2013,
Ibrahim et al 2014, Guirgis et al 2015). Moreover,
pathological, interictal HFOs may be modulated by
high amplitude, low frequency background activity,
especially during sleep (Kerber et al 2014, Frauscher
et al 2015, von Ellenrieder et al 2016, Song et al
2017, Motoi et al 2018). However, this characteristic
of high frequency activity remains relatively unex-
plored compared to the simple counting of HFOs per
minute.

In this study, we show that the temporal dynam-
ics of HFOs, beyond the changing of HFO rate with
sleep stage, are predictive of SOZ. In particular, the
more Poisson-like the HFO generator, the more likely
that tissue is to be in the SOZ as judged by area under
the curves (AUCs) of receiver operating characteristic
(ROC) curves. Tissue that generates HFOs occurring
close together in time with long intermediate periods
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(e.g. temporal ‘clumping’ of HFOs) is less likely to be
part of the SOZ. We found this to be true in general
across many hours of iEEG in 16 patients as well as
in empirically-found brain states that are reflective of
NREM sleep in those patients.

3. Materials andmethods

3.1. Ethics statement
Approval for this study was obtained from the Insti-
tutional Review Board of the University of California,
Irvine.

3.2. Patients and iEEG recordings
Patients who had intractable epilepsy and were can-
didates for resective surgery had intracranial elec-
trodes implanted at theUniversity of California Irvine
Medical Center to aid SOZ localization. We analyzed
iEEG data from patients (N = 16, 8 female, 36± 15
years of age, see table 1) who were implanted with
either subdural electrocorticography (ECoG) grids
or strips, depth macroelectrodes and/or stereotactic
EEG (SEEG). The electrode types and locations were
chosen by the clinicians for diagnostic and surgical
evaluation.

Long-term iEEGwas recorded for all patients with
high sample rates (minimum 2000 Hz, maximum
5000 Hz) in order to capture HFOs in the ripple
band with high accuracy. Note that standard clinical
sampling rates of 500 Hz and below may not be suf-
ficient to capture ripples due to aliasing of digital sig-
nals. It is recommended that a sample rate of at least
250× 2.5= 625 Hz be used to capture ripple-band
HFOs; the 2.5 multiplier is Engineer’s Nyquist given
by Bendat and Piersol (2011). SOZ channels were
identified by board-certified epileptologists as those
with time courses indicative of seizure onset before
propagation to other channels during any seizure cap-
tured via iEEG.

Channels were localized via coregistration of pre-
and post-implantation magnetic resonance imaging
(MRI) and/or post-implantation computed tomo-
graphy (CT) as described by Stolk et al (2017), Zheng
et al (2017), Helfrich et al (2018), Stevenson et al
(2018). Each intracranial channel was classified as
out-of-brain, within white matter, or within grey
matter. If the locationwas on the boundary of the grey
and white matter, it was labeled as white matter. If the
location was near the edge of the brain, it was labeled
as being outside the brain.We did not disaggregate by
grey matter regions (hippocampus, amygdala, insu-
lar regions, neocortical regions, etc), although other
studies have described differing HFO rates between
these regions (Blanco et al 2011, Wang et al 2017,
Frauscher et al 2018). Whenever possible, a channel
within each strip or grid that was located within white
matter was used as a reference. If no such information

existed or was unclear from the localization, the chan-
nels were referenced to the average of all the channels
on the grid or depth strip. The importance of core-
gistration was assessed with 6 of the 16 patients in
which localization information was unavailable, and
so we used data from all available iEEG electrodes.
That is, we tested the robustness of our procedure
to the absence of localization information that could
have been used to exclude electrodes not placed in
neural tissue or placed in white matter.

In two patients, scalp EEG, heart rate (electrocar-
diography; EKG), and eye movements (electrooculo-
graphy, EOG) were concurrently recorded in order
to extract sleep stage information over time in off-
line analysis. The data were then sleep staged using
the software from Greer and Saletin (2011). Thirty-
second epochs of data were classified as NREM slow
wave sleep, REM, wakefulness, or artifact. This sleep
staging was then compared to HFO model-found
brain states, discussed later.

3.3. Automatic detection of high frequency
oscillations during long-term recordings
Automatic detection of HFOs is nowwidely used, and
the results of automatic detectors are comparable to
that of visual detection (e.g. see Jacobs et al 2018,
Remakanthakurup Sindhu et al 2020). We detected
HFOs automatically in each channel of iEEG over
the duration of each patient’s recording using the
HFO detection software developed by Charupanit
and Lopour (2017). This algorithm finds oscillations
that are significantly larger than the amplitude noise
floor in the 80–250 Hz frequency band. By iterat-
ively generating a Poisson distribution of oscillation
(‘peak’) amplitudes, the detector can identify events
with at least 4 consecutive high amplitude oscilla-
tions that exist in the tail of the rectified amplitude
distribution (i.e. 8 rectified peaks). Specifically, we
defined the threshold as peak amplitudes above the
95.8% percentile (i.e. α= 0.042, which was recom-
mended by Charupanit and Lopour (2017)). Note
that the estimation of the noise floor is adaptive and
will change for each channel. We also allowed the
noise floor to change every 5minwithin each channel
to account for non-stationarities, such as changes in
state of vigilance and sleep stage.

To ensure that HFO rates were not affected by
the occurrence of seizures, we analyzed only interictal
HFOs that occurred at least 1 h away from clinically-
identified seizures. The resulting dataset had at least
4 h of iEEG per patient, with a maximum of 25 h for
one patient, and a mean and standard deviation of
10± 5 h acrossN = 16 patients (see table 1). The ori-
ginal iEEG records contained overnight data. How-
ever our stipulations that the HFO counts used in
analysis should both be consecutive and be at least
1 h away from clinically-identified seizures resulted in
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Figure 1.Modulation of HFO rate over 24 h in one example patient. HFOs were automatically detected using the algorithm
by Charupanit and Lopour (2017). Automated HFO counts per minute are shown from an iEEG channel in the left
parahippocampal cortex (blue line) and an iEEG channel in the medial temporal gyrus (green line), with HFO counts per minute
denoted by the right y-axis. These counts are overlayed on a grey-scale color map of low frequency band power (1–20 Hz) from
the same left parahippocampal iEEG channel during the same 24 h time period. Darker shading indicates higher power in the
frequency band denoted by the left y-axis. HFO counts (blue and green lines) are modulated by the sleep-wake cycle (von
Ellenrieder et al 2017), as evidenced by their correlation with delta (1–4 Hz) frequency power (grey-scale color map). HFOs are
typically analyzed during slow-wave sleep. However, with the method presented here, the data does not need to be visually sleep
staged prior to classification of SOZ and non-SOZ channels.

diverse start times and coverage of these records. An
example of the changing rate ofHFOs from two chan-
nels within one patient is given in figure 1.

3.4. Removing artifactual HFOs
We extended the Charupanit and Lopour (2017)
algorithm by subsequently identifying and then
removing detectedHFOs thatwere likely artifact. This
extension closely followed the ‘qHFO’ algorithm of
Gliske et al (2016). That is, we sought to remove
detected HFOs that (a) occurred in all channels sim-
ultaneously since the sources of these HFOs were
likely spatially-broad electrical artifacts rather than
localized neural generators, and (b) were falsely iden-
tified due to DC-shift artifacts that appeared as
HFOs after bandpass filtering. Thus we first extracted
HFOs using the algorithm by Charupanit and Lopour
(2017), as discussed previously. We then calculated
the common average across channels and reran the
Charupanit and Lopour (2017) algorithm on this
common average to identify cases of likely electrical
artifacts. Then we found DC shifts in each channel by
band passing the data from 850 to 990 Hz, calculat-
ing the line length of each 100 ms segment of data,
and marking segments as DC shifts if they exceeded
a threshold of 4 standard deviations above the mean
line length over the previous 5 s (again calculated in
100 ms segments). HFO occurrences for each iEEG
channel that overlapped in time with either artifac-
tual HFOs found in the common average or DC shifts

detected in that channel were removed from further
analysis.

3.5. Assuming negative binomial processes
It has previously been shown that pathological, inter-
ictal HFOs can be modulated by high amplitude, low
frequency background activity during sleep (Kerber
et al 2014, Frauscher et al 2015, von Ellenrieder et al
2016, Motoi et al 2018). Therefore the typical model
for count data, a Poisson process in which the vari-
ance must equal the mean rate over time (Cook
2009), may not accurately describe HFO count data
in general. While we did not directly measure phase-
amplitude coupling of HFOs to slow rhythms, we
estimated the variance of the HFOs over time within
fitted models. ‘Overdispersion’ occurs when there is
greater variability in the data (e.g. HFO count data)
than is expected by a Poisson process. Overdispersion
can be due to the ‘clumping’ of HFOs in close tem-
poral proximity to one another, such that there are
bursts of HFOs occurring in time followed by relat-
ively quiet periods without many HFOs (see bottom
plot of figure 2). Thuswemight expect overdispersion
to be predictive of SOZ based on the previous literat-
ure. We estimated parameters in hierarchical models
that provide inference as to whether HFOs occur in
patterns in which they are ‘clumped’ together.

A negative binomial process is a description of
count data that can account for overdispersion (Cook
2009) and can be viewed as a relaxation of a restriction
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Figure 2. Top: simulated instantaneous HFO rates (per second) from a negative binomial process with a small clumping
coefficient (ζ= 0.01, near a Poisson process) over a 60 min period. Electrodes that contained negative binomial processes with
small clumping coefficients were found to be predictive of SOZ. Middle: simulated instantaneous HFO rates from a negative
binomial process with some clumping (ζ= 1). Bottom: simulated instantaneous HFO rates from a negative binomial process
with significant clumping (ζ= 10). All simulations had a HFO rate of λ= 0.1 per second.

that HFO counts must follow a strictly Poisson pro-
cess. In order to characterize the temporal dynam-
ics of HFOs, we fit the data to negative binomial
models of count data per second. That is, we auto-
matically counted the number of HFOs from our
qHFO algorithm for each iEEG electrode and each
patient per second. These counts per second were
then assumed to be generated from a negative bino-
mial process whose parameters could change every
5 min. We chose a 5 min window in order to meas-
ure changes with high time resolution over mul-
tiple hours while also keeping enough observations to
accurately estimate parameters of the negative bino-
mial distribution of count data. This resulted in 60×
5= 300 HFO count observations to estimate para-
meters of the negative binomial process per 5 min.

The negative binomial distribution has two com-
mon parameterizations. In the parameterization we
used in this study, the negative binomial distribution
gives a number of ‘failures’ (e.g. number of HFOs
within a given second) before η ‘successes’ where θ
is the probability of a success (e.g. the probability
that no HFOs occur) (Plummer 2003, Cook 2009).
Note that η is not restricted to integers. To aid SOZ
prediction, we transformed the two parameters of
the negative binomial distribution θ and η to create
three parameters: (a) the rate of HFOs per second λ,
(b) a ‘clumping coefficient’ (CC, ζ), defined as the
inverse of η, and (c) the coefficient of variation (CV,
γ), defined as the ratio of the standard deviation of
counts over the rate of HFOs. Note that as η goes
to positive infinity, the CC ζ goes to zero and the
negative binomial distribution approaches a Poisson
distribution (Cook 2009). The top plot of figure 2

shows an example of a small CC. Large CCs ζ indic-
ate that HFOs are more likely to occur immediately
following other HFOs (see bottom plot of figure 2).
CV much greater than 1 (γ ≫ 1) also indicate tem-
poral clumping of HFOs, i.e. a CV greater than one
indicates that the variance is greater than the mean
rate. CV much less than 1 (γ ≪ 1) indicate oscillat-
ory dynamics, i.e. a CV less than one indicates a low
variance relative to the mean rate. A CV near 1 (in
addition to a CC near zero, ζ ≈ 0) indicates that the
process is more Poisson-like. The HFO rate, CC, and
CV were included in the model to gauge the predict-
ive ability of each parameter to inform the location of
the SOZ.

To illustrate the concept of clumping, we sim-
ulated negative binomial processes. Specifically, we
simulated three different CCs, ζ = 0.01, ζ = 1, and
ζ = 10, with an HFO rate parameter of λ= 0.1 per
second over a 60 min period. Note that as the CC
approaches zero, ζ→ 0, the number of ‘successes’
approaches positive infinity, η →∞, and the negat-
ive binomial process with rate θ approaches a Pois-
son process with rate θ. Thus ζ = 0.01 approximates
a Poisson process. In the simulation, we disregarded
the shape and duration of the HFOs themselves and
instead simulated the number of HFOs per second
per electrode. The simulation results are shown in
figure 2.

3.6. Hierarchical negative binomial models
To automatically obtain HFO dynamics across chan-
nels within each patient, we fit models to the HFO
count data using Bayesian methods with JAGS (Just
Another Gibbs Sampler). JAGS can easily sample
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from complex models using Markov Chain Monte
Carlo (MCMC) (Plummer 2003) via the pyjags
Python package (Miasko 2017). Specifically, we fit
models of HFO counts per second t which con-
tained parameters of HFO dynamics and hierarch-
ical parameters. We then derived estimates of HFO
rates λ, CCs ζ , and coefficients of variation γ. Hier-
archical parameters were included in the model to
encourage stable parameter estimates across the 5
min windows w, as we expected iEEG channels to
have somewhat consistent temporal dynamics. Hier-
archical distributions of HFO parameters allow para-
meters to ‘shrink’ towards the mean HFO paramet-
ers, which improves estimation of these paramet-
ers in the presence of outliers (Gelman et al 2013,
Boehm et al 2018). We experimented with differ-
ent hierarchical models with Poisson and negative
binomial base-likelihoods describingHFO counts per
second t without assessing SOZ prediction. Many
models’ parameters would not converge to stable pos-
terior distributions, either due to an excess of hier-
archical parameters which caused the models to be
unidentifiable or due to a complexity in the para-
meter space that the splice sampling in JAGS has dif-
ficulty sampling. We present parameter fitting results
and SOZ prediction from two hierarchical negative
binomial models in this paper, first without (Model
1) and then with (Model 2) an undetermined mix-
ture of distributions over time. We also present res-
ults from a mixture model of Poisson distributions
(Model 3) in the supplementary materials (available
online at stacks.iop.org/JNE/19/016034/mmedia).

In Model 1, we assumed that the HFO dynam-
ics were described by a negative binomial distribution
and that these dynamics could change per 5 min win-
dow.We also included hierarchical distributions such
that the HFO rate λ, measured in 5 min windows w,
was described by a normal distribution with a mean
HFO rate parameter µ(λ) with some standard devi-
ation σ(λ) for each iEEG channel e. Similarly, the CC
ζ was described by a normal distribution with mean
CC µ(ζ) with some standard deviation σ(ζ) across the
5 min windows for each iEEG channel e. The CV γ
was derived from the ratio of the standard deviation
to themean of the negative binomial distribution, and
it was not described by a hierarchical distribution of
parameters.

Model 1 was fit to the HFO count data of each
patient separately and is given by the following likeli-
hood distribution, parameter relationship equations,
hierarchical distributions, and prior distributions:

(HFO count)te ∼ NegBinomial(θwe,ηwe), (1)

θwe = ηwe/(ηwe +λwe), (2)

ηwe = 1/ζwe, (3)

γwe = 1/
√
ηwe(1− θwe), (4)

λwe ∼ Normal(µ(λ)e,σ
2
(λ)e) ∈ (0,∞), (5)

ζwe ∼ Normal(µ(ζ)e,σ
2
(ζ)e) ∈ (0,∞), (6)

µ(λ)e ∼ Normal(1, .52), (7)

σ(λ)e ∼ Gamma(1,1), (8)

µ(ζ)e ∼ Normal(10,52), (9)

σ(ζ)e ∼ Exponential(0.25). (10)

3.7. Assumingmixtures of negative binomial
distributions
Based on previous research (Dümpelmann et al 2015,
von Ellenrieder et al 2016, 2017), we assumed that
HFO rates would be a function of the state of vigilance
and sleep stage. This could be seen when the HFO
rates were plotted over time, as increased rates cor-
related with increased delta (1–4 Hz) power, which is
generally indicative of slow-wave sleep (see figure 1).
We also suspected that HFO ratesmight change based
on the cognitive brain state of the patient. For these
two reasons we allowed another hierarchical model,
Model 2, to automatically identify the states inherent
in the data.

Mathematically, inModel 2we assumed thatHFO
counts per second for each channel were distributed
from a mixture model of negative binomials. That
is, we assumed that each channel contained multiple
distributions of HFO counts (one distribution per
state k), with the representative state changing over
time.We enforced the restriction that a change in state
caused the distributions from all channels to change
at the same time. Thus, we assumed that the brain’s
state of vigilance or sleep changed each channel’s
HFO dynamics simultaneously, although the para-
meter values for each channel could change in dif-
ferent ways. We initially constrained the number of
possible brain states k to 2–4 per channel, switching
at most every 5min window w during the record-
ings. After initialmodel fitting experiments, discussed
above, we constrained the number of negative bino-
mial mixtures to be two per channel.

Model 2 was given by the following equations:

(HFO count)te ∼ NegBinomial(θke,ηke), (11)

θke = ηke/(ηke +λke), (12)
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ζke = 1/ηke, (13)

γke = 1/
√
ηke(1− θke), (14)

µk ∼ Normal(1, .52), (15)

σk ∼ Gamma(1,1), (16)

λke ∼ Normal(µk,σ
2
k) ∈ (0,∞), (17)

ηke ∼ Uniform(0,50), (18)

kw ∼ Categorical(π), (19)

π ∼ Dirichlet(1,1). (20)

3.8. Solving model convergence issues
Each model was fit using MCMC in JAGS with six
chains of 5,200 samples each. This was performed
in parallel with 200 burn-in samples and a thinning
parameter of 10. This procedure resulted in (5200−
200)/10= 500 posterior samples from each chain
for each parameter. We kept all posterior samples
from each chain to assess posterior distributions from
Model 1. We confirmed that this model fitting pro-
cedure produced useful parameter estimates in simu-
lation (see supplementarymethods on simulated neg-
ative binomial processes).

However, the Markov chains resulting from
Model 2 suggested that this model may not easily
converge to posterior distributions, depending upon
the initial conditions and given HFO count data.
Obtaining model convergence is often difficult with
mixture-modeling in general, and it was not eas-
ily solved when assuming a certain number of brain
states in ourmodeling work presented here. For those
patients whose data did not converge when assuming
two brain states, two-state models were enforced by
removing non-converging Markov Chains in order
to achieve convergence across all kept chains. Out
of the 6 Markov Chains for each model, a chain
was removed if (1) its time course over samples did
not converge to a one-peaked posterior distribution,
and (2) if the chain did not converge to the remain-
ing majority of other chains (if applicable). We also
calculated the Gelman–Rubin statistic, R̂, for each
parameter; this compares the estimated between-
chain andwithin-chain variances (Gelman andRubin
1992). Six patients’ data had Model 2 converge in all
six chains, five patients’ data had Model 2 converge
in five of six chains, one patient’s data had Model 2
converge in half the chains, three patient’s data had

Model 2 converge in two chains, and one patient’s
data hadModel 2 ‘converge’ with one chain. The pos-
terior samples from each chain of 500 samples were
combined to form one posterior sample between
500 and 3000 samples for each parameter in each
model. Note that removing chains is an unortho-
dox method in Bayesian analysis, and does not strictly
guarantee model convergence. However, this proced-
ure enabled better prediction of the SOZ than Model
1 in some patients, especially when using the CC and
CV as shown in figures 4 and 5. However the non-
convergence results may imply that a two-state model
is not sufficient to describe all HFO dynamics.

3.9. Classification of SOZ and non-SOZ channels
Weused estimates of theHFO rate parameter, the CC,
and the CV obtained from the posterior distributions
of Model 1 to classify channels as SOZ or non-SOZ.
Specifically, we took the average across time windows
w of the posterior medians of λ, ζ , and γ to generate
estimates for each iEEG channel e with each patient’s
data. Note that we used the mean of median posteri-
ors from Model 1 as the estimates for rate and the
CC instead of the hierarchical mean parameters of
HFO rate µ(λ)e and CC µ(ζ)e, and we confirmed that
the mean of median posteriors were reflective of true
mean HFO rates and CCs in simulation (see supple-
mentary figure 1). In contrast, all HFO parameters
from Model 2 were estimated by the medians of pos-
terior distributions for each brain state k. After find-
ing parameter estimates the brain states were sorted
by the average amount of standardized mean delta
(1–4 Hz) power across all iEEG channels and 5 min
windows used in the model, and we will refer to them
as brain state A (brain state with higher mean delta
power) and brain state B (brain state with lowermean
delta power), see figure 7.

We built ROC curves by varying the cutoff val-
ues for classification. ROC curves show the trade-off
between true positives (channels identified as SOZ by
clinicians that are also labeled as candidate SOZ chan-
nels by the cutoff value) versus false positives. Clini-
cians and researchers may find ROC curves useful
because of the possible trade-offs between resecting
or not-resecting some identified SOZ tissue. These
ROC curves show the overall accuracy of our pre-
diction over a continuum of possible cutoff values.
One ROC curve was created for each patient and each
HFO parameter. The AUC was also calculated for
each patient and parameter by integrating the ROC
curves. AUCs were viewed as an overall measure of
predictability of each parameter for each patient. We
evaluated AUC values for each parameter within in
each patient by (1) deeming AUC >0.60 as ‘predict-
ive’ and (2) comparing performance of ROC curves
based on real SOZ and non-SOZ labels to ROC curves
based on randomly shuffled labels. That is, we ran-
domly shuffled SOZ and non-SOZ labels of each
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channel used in the modeling without replacement
1000 times and calculated 1000 fake AUCs values.
We then ordered the fake AUCs from smallest to
largest for each parameter and patient and found the
950th value (95% of the reshuffled samples) to use
as an AUC cutoff. If the AUC was larger than this
AUC cutoff, the AUC was deemed ‘strongly predict-
ive’. We also built Precision-Recall curves (Davis and
Goadrich 2006) that are shown and explained in the
supplementary materials. However, Precision-Recall
curves cannot easily be compared across patients due
to different baseline ratios of SOZ to non-SOZ chan-
nels (see table 1).

4. Data and code availability

Automatically identified HFO counts, standard-
ized delta (1–4 Hz) power, channel localizations,
and samples from posterior distributions for Mod-
els 1–3 are available upon request and at https://
doi.org/10.6084/m9.figshare.12385613. MATLAB,
Python, and JAGS data extraction and analysis code
are available at https://osf.io/3ephr/ and in the follow-
ing repository https://github.com/mdnunez/sozhfo
(as of June 2020 with amajor update in August 2021).

5. Results

5.1. Small clumping coefficients are predictive of
SOZ
The data and modeling show that small CCs are pre-
dictive of SOZ, as judged by evaluating parameter
estimates of CC from both models. We will refer to
CCs estimated by Model 1 as ‘CC1’, the CCs estim-
ated by Model 2 in brain state A as ‘CC2A’, and the
CCs estimated by Model 2 in brain state B as ‘CC2B’.
The mean and standard deviation of the CC1 AUCs
across patients were 0.81± 0.18, while the same stat-
istics derived from CC2A and CC2B were 0.82± 0.14
and 0.75± 0.21 respectively. The data of 14 of 16
patients yielded CC1 and CC2A that we deemed pre-
dictive of SOZ (AUC > 0.60), while the data of 12
patients yielded CC2B that were deemed predictive.
The ROC curves and distribution of AUCs for the CC
parameter are shown in figure 3. All summary ROC
evaluation statistics are given in table 2.

Importantly, the prediction of SOZ by the CC
does not clearly depend upon localization of grey
matter channels using CT and MRI scans (and exclu-
sion of all other channels from the analysis). For
instance, small CC2A were predictive of SOZ (AUC
> 0.60) in all six patients forwhichwe did not exclude
channels that were outside the brain.

By combining all channels across all patients, we
can also obtain information about the general pre-
dictability of SOZ using these parameters. The num-
ber of channels used in the models varied by patient
(minimum of 41, maximum of 172, and a mean and

standard deviation of 87± 39 channels acrossN = 16
patients, see table 1), and the number of SOZ chan-
nels also varied by patient (minimum of 1, max-
imum of 14, and a mean and standard deviation of
7± 4). However, combining channels across patients
(total channel count of 1391) provides estimates of
the cutoff values for these parameters that could be
used to identify SOZ channels during interictal peri-
ods. The aggregate ROC curves for the CCs estimated
using Model 1 and Model 2 are shown in figure 4.
Across all N = 16 patients, when CC2A less than or
equal to 1 (ζ ⩽ 1) were treated as indicative of the
SOZ, the false positive rates (FPR) was only 0.31
across all channels, with a corresponding true posit-
ive rate (TPR) of 0.86. Note that CC1 ⩽ 1 estimates
would result in a FPR of 0.22 and a TPR of 0.70. A
TPR of 1 was achieved by treating all CC2A less than
or equal to 2.34 (ζ ⩽ 2.34) as indicative of the SOZ,
although this resulted in a FPR of 0.62. The CC2B
were not as informative of SOZ.

5.2. Coefficients of variation less consistently
predict SOZ
The ability of the CV to predict SOZ was similar, but
slightly less consistent, than the CCs. We will refer
to CV estimated by Model 1 as ‘CV1’, the CV estim-
ated by Model 2 in brain state A as ‘CV2A’, and the
CV estimated by Model 2 in brain state B as ‘CV2B’.
The ROC curves and distribution of AUCs for the CV
parameter are shown in figure 5. Themean and stand-
ard deviation of the CV1 AUCs across patients were
0.79± 0.19, while the same statistics derived from
CV2A and CV2B were 0.77± 0.24 and 0.73± 0.20
respectively. ROC evaluation statistics based on pre-
diction by CV are shown in table 2.

5.3. Prediction of SOZ using HFO rate is not
consistent across patients
In some patients, the HFO rate could be used to
identify the SOZ channels in different states with suc-
cess rates similar to the CC and CV parameters. How-
ever, large HFO rates were not predictive of SOZ in
some patients. We will refer to HFO rates estimated
by Model 1 as ‘HR1’, the HFO rates estimated by
Model 2 in brain state A as ‘HR2A’, and the HFO rates
estimated by Model 2 in brain state B as ‘HR2B’. The
ROC curves and distribution of AUCs for the HFO
rates parameter are shown in figure 6. The mean and
standard deviation of the HR1, HR2A, and HR2B
AUCs across patients were 0.67± 0.26, 0.70± 0.30
and 0.63± 0.25 respectively. ROC evaluation statist-
ics based on prediction by HFO rate are shown in
table 2.

5.4. Model-derived brain states correspond to sleep
and wakefulness
The negative binomial mixture model (Model 2)
automatically separated windows of time into two
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Figure 3. SOZ prediction based on the clumping coefficients (CC) estimated by Model 1 (Top) and Model 2 (Bottom). (Left)
ROC curves when using small values of the CC to identify SOZ channels. ROC curves for individual patients (N= 16) are
displayed using fine lines, and the average is shown in bold. The bold dashed line indicates an ROC at chance prediction. Data
points on the top of these two plots indicate the false positive rates (FPR) for which the true positive rate (TPR) is 1, with patient
labels to compare across plots. FromModel 2, the brain state with the most delta (1–4 Hz) power in each patient was labeled state
A (green lines), while the other model-found brain state was labeled state B (blue lines). (Right) Distribution of AUC values based
on CC for each patient. The exact AUC values are denoted as hexagons or stars on the x-axis, while the shaded distributions are a
density approximation from N= 16 values. Hexagons denote patients where the analysis was performed exclusively on grey
matter channels, while stars denote patients for which all channels were included. Each point is labeled with the corresponding
patient number, and the y-values are sorted by AUC; however, the y-values have no other meaning. The bold dashed lines indicate
an AUC of 0.5.

brain states based on the HFO dynamics in all chan-
nels. Brain state labels were thus influenced by the
HFO dynamics from all channels simultaneously. We
found that the brain state labels of convergedMarkov
chains tracked known sleep/wake dynamics.

In two patients whose data were sleep staged
manually using concurrent scalp EEG, the two HFO
model-derived brain states blindly separated slow
wave sleep (i.e. NREM sleep stages 1, 2 and 3) from
all other states (REM and wakefulness) as shown in

the lower two panels of figure 7. In Patient 15, the
congruence between the visually sleep staged data and
the HFO model-derived brain states from Model 2
was 89.2%, with NREM sleep being correctly iden-
tified by the model 90.6% of the time and the other
states being correctly identified 83.3% of the time. In
Patient 16, the congruence between the sleep staged
data and the model-derived brain states was 91.7%,
with all states being correctly identified 91.7% of the
time by the model.
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Table 2. Evaluation of ROCs of SOZ prediction by each estimated parameter. The following prediction metrics are shown across the
N= 16 patients: means and standard deviations of the AUC, number of patients with AUC> 0.60 (Pred.), number of patients with AUC
larger than the cutoff generated from randomly shuffled labels (Strong Pred.), number of patients with false positive rates less than 0.60
for true positive rates equal to 1 (FPR< 0.60), and number of patients with false positive rates less than 0.20 for true positive rates equal
to 1 (FPR< 0.20). CC denotes prediction metrics by clumping coefficients. CV denotes prediction metrics by coefficients of variation.
HR denotes prediction metrics by HFO rate. 1 denotes prediction metrics estimated from parameters of model 1. 2A denotes prediction
metrics estimated from parameters of state A of model 2. 2B denotes prediction metrics estimated from parameters of state B of model 2.

Parameter AUC Pred. Strong Pred. FPR< 0.60 FPR< 0.20

CC1 0.81± 0.18 14 12 12 6
CC2A 0.82± 0.14 14 13 14 6
CC2B 0.75± 0.21 12 9 10 4
CV1 0.79± 0.19 12 10 12 8
CV2A 0.77± 0.24 11 10 13 7
CV2B 0.73± 0.20 11 8 12 4
HR1 0.67± 0.26 9 9 11 5
HR2A 0.70± 0.30 10 9 11 6
HR2B 0.63± 0.25 8 7 10 3

Figure 4. The aggregate ROC curves for all included channels (total channel count of 1391) across all patients (N= 16) when
using small values of the HFO clumping coefficient (CC) estimates to identify SOZ channels. A few representative cutoff CC
values are shown in the text boxes, such that values smaller than the CCs in text boxes generated the indicated points on the ROC
curves across all included patients. (Left) Aggregate ROC curve generated from CC estimates using Model 1 (CC1). (Right)
Aggregate ROC curve generated from CC estimates using Model 2. The brain state with the most delta (1–4 Hz) power in each
patient was labeled brain state A while the other model-found brain state was labeled brain state B. The green curve was generated
from all CCs for each channel from all patients’ model-found brain states A (CC2A). The blue curve was generated from all CCs
for each channel from all patients’ model-found brain states B (CC2B). The bold dashed lines indicate an AUC of 0.5.

We did not have concurrent EEG, EKG, and EOG
in the other patients to evaluate the correspond-
ence between sleep stages and model-derived brain
states. However, we could evaluate how well stand-
ardized delta power (1–4 Hz), averaged across elec-
trodes, corresponded to the two model-derived brain
states, as a proxy for sleep staged data. In half of
the patients (8/16), we found found that delta power
was significantly different in the two states (p< 0.001)
using both ANOVA and Kruskal–Wallis tests using
cutoff α= 0.001 (see last column of table 1). An
additional patient had a significant Kruskal–Wallis
test (p= 0.006) using cutoff α= 0.01, with a small
ANOVA p-value (p= 0.011). And one more patient
had a significantKruskal–Wallis test (p= 0.025) using
a cutoff of α= 0.05. Of the six patients without any
indication of significant differences in delta power
between the two model-derived brain states, four did
not have localization information to enable exclusion

of electrodes outside the brain prior to the standard-
ized mean delta calculation. Only two of ten patients
for whom we included localization information did
not show evidence for model-derived brain states
consistent with changes in delta power. Note that we
explored removing delta power outliers across chan-
nels (with various cutoffs of 1, 2, 3, and 4 standard
deviations above the mean power across electrodes
in each 5 min time window) in a post-hoc analysis.
While this did switch the brain state labels for four
patients’ brain states (Patients 3, 6, 7, and 11), the
delta power in these patients still did not clearly dif-
ferentiate between the two states (see the second panel
of figure 7 for an example).

As previously mentioned, we labeled brain state A
as the brain state that contained the largestmean delta
(1–4 Hz) power. However, we have reason to sus-
pect that in at least one patient this automatic labeling
failed and placed themajority of NREM sleep in brain
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Figure 5. SOZ prediction based on the coefficients of variation (CV) estimated by Model 1 (top) and Model 2 (bottom). (Left)
ROC curves when using small values of the CV to identify SOZ channels. (Right) Distribution of AUC values based on CV for
each patient. Readers are referred to the caption of figure 3 for a detailed description of the plot elements.

state B. For instance, the HFO count data used in the
models fromPatient 11was derived from9h of neural
recordings starting at approximately 22:45 at night,
suggesting that the majority of the HFO count data
should be from NREM periods. However, the largest
delta power was contained in the brain state that
occurred infrequently (see second panel of figure 7).
Note that this patient did have a significant Kruskal–
Wallis test (p= 0.025) using a cutoff of α= 0.05, sug-
gesting a difference in delta power between the two
states. However this mislabeling might explain why
Patient 11’s HFO parameters during brain state B
were more predictive than brain state A, with the
largest difference seen in the AUCs based on the CC
(see figure 3).

5.5. Assuming two brain states improved SOZ
prediction for some patients
We found that assuming two brain states in hier-
archical negative binomial mixture-models improved
SOZ prediction in some patients by isolating NREM
sleep automatically. This can been seen when com-
paring the SOZ prediction using parameters ofModel
1 to Model 2 after fitting these models to data from
each patient. For instance, the CC of Patients 5 and 7
from brain state A in Model 2 result in higher AUC
values than the CC of Model 1 (see figure 3). This
supports prior findings that NREM sleep should be
used for not only calculating pathological HFO rates
(Dümpelmann et al 2015, von Ellenrieder et al 2016,
2017), but also for calculating pathological CCs.
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Figure 6. SOZ prediction based on the HFO rate estimated by Model 1 (top) and Model 2 (bottom). (Left) ROC curves when
using large values of the HFO rate to identify SOZ channels. (Right) Distribution of AUC values based on HFO rate for each
patient. Readers are referred to the caption of figure 3 for a detailed description of the plot elements.

However for patients overall, there was not a
clear benefit of using Model 2 over Model 1 because
the data across patients was generally predictive of
SOZ. We compared the values of FPR at which
the TPR was 1, and we did not find evidence for
a mean difference derived from CC1 versus CC2A
(p= 0.337, BF= 0.39, two-sided paired samples t-
test) nor CV1 versus CV2A (p= 0.993, BF= 0.26).
However, we did find some evidence for a mean
difference in the FPRs derived from CC1 versus
CC2B (p= 0.017, BF= 3.55) and CV1 versus CV2B
(p= 0.004, BF= 10.80). Similarly, we did not find
evidence for a mean difference in AUCs derived from
CC1 versus CC2A (p= 0.724, BF= 0.27) nor CV1
versus CV2A (p= 0.822, BF= 0.26), while we did
find evidence for a mean difference AUCs derived

from CC1 versus CC2B (p= 0.006, BF= 8.73)
and CV1 versus CV2B (p= 0.010, BF= 5.45). We
observed no significant mean differences between
the SOZ prediction results using HFO rate based on
Model 1 versus brain state A in Model 2 nor Model 1
versus brain state B in Model 2.

A similarity of prediction between the two brain
states in Model 2 could be explained by consistent
relative differences between channels. For example,
although it is known that the rate of HFOs increases
during NREM sleep (von Ellenrieder et al 2017), the
classification accuracy based on the two brain states
could be similar if the relative rates between chan-
nels remain the same. To test this, we first com-
pared the means of the three derived parameters
across the two brain states in Model 2, collapsed
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Figure 7.Model-derived brain states correspond to sleep and wakefulness. Representative examples are shown from Patients 1, 11,
15, and 16 with brain states A (dark green dots) and B (dark blue dots) obtained automatically every 5 min fromModel 2. The
labels of states A and B were assigned using the mean slow-wave delta power (1–4 Hz; standardized mean across channels), with
brain state A containing higher delta power. Black lines represent the standardized mean delta power across channels. In patients
15 and 16, who had concurrent iEEG and scalp EEG, the HFO model-derived brain states differentiated slow wave sleep (i.e.
NREM sleep stages 1, 2 and 3; denoted by light green dots in the upper portion of the bottom two subplots) from all other states
(REM sleep and wakefulness; denoted by light blue dots in the lower portion of the bottom two subplots). This determination was
made based on a comparison to expert sleep staging.

across patients and channels, and we found that they
were all significantly different. The CC had a mean
and standard deviation of 3.48± 7.62 in brain state
A and 5.24± 8.85 in brain state B collapsed across
patients and channels (p< 0.001, BF≈ 1.337× 1012,
two-sided paired samples t-test). The CV had a mean
and standard deviation of 2.58± 2.70 in brain state
A and 2.97± 1.63 in brain state B collapsed across
patients and channels (p< 0.001, BF≈ 6.583× 106,
two-sided paired samples t-test). Note that the mean
CC and CV values are quite larger than the smaller
predictive values (see figure 4) because SOZ chan-
nels made up only a small percentage of total chan-
nels in our study. The HFO rates had a mean and
standard deviation of 0.59± 0.56 per second in brain
state A and 0.47± 0.54 per second in brain state
B, collapsed across patients and channels (p< 0.001,
BF≈ 4.903× 108, two-sided paired samples t-test).
Then, to test whether the model-derived brain states
captured independent information about HFOs, we
calculated the Pearson correlation between the two
brain states for the model-derived values of CC,
CV, and HFO rates. The mean correlation coeffi-
cients of these measures indicated that HFO dynam-
ics were similar across the two brain states in most
patients, although there was a large range of cor-
relation values. The Pearson correlations between
brain states for all patients were as follows: ρζ =
0.50± 0.25 (mean ± standard deviation) for CC,
ργ = 0.69± 0.24 for CV, and ρλ = 0.63± 0.28 for
HFO rates.

6. Discussion

6.1. HFO clumping is a more reliable predictor
than HFO rate
HFOs that occurwith less clumping behavior (i.e.HFO
occurrences that more closely follow a Poisson pro-
cess) are more consistently predictive of SOZ than a
high rate of HFOs. The CC and CV were measured
using hierarchical negative binomial models. Small
CC and small CV were predictive of SOZ in most
patients. In a secondmodel, we found twoCC andCV
per iEEG channel using a model of two brain states
obtained from a mixture of negative binomial distri-
butions of HFO counts. CC were found to be more
predictive of SOZ in the brain state corresponding
to large delta power, likely corresponding to NREM
sleep in at least half of the patients. Although CC
based on all the interictal data usingModel 1were also
predictive of SOZ. High HFO rates were also inform-
ative of the SOZ, but were less consistently predict-
ive across patients than CC and CV. Our results also
suggest that if HFO CC, CV, and rates from a single
brain state are to be used in prediction of the SOZ,
they should be assessed during NREM sleep. This
supports previous findings in the field (Dümpelmann
et al 2015, von Ellenrieder et al 2016, 2017).

6.2. Towards automatic classification of SOZ with
interictal HFOs
Originally, we hypothesized that using mixture-
modeling to automatically identify periods of NREM

14



J. Neural Eng. 19 (2022) 016034 M D Nunez et al

sleep would produce better prediction of SOZs.
However, we did not find evidence that mixture-
modeling greatly improved SOZ prediction, com-
pared to Model 1, over all patients. While there were
other differences between these twomodels, the bene-
fit of mixture-modeling for clinical evaluation is not
clear, compared to calculating parameters such as the
CC using all available data. These findings could be
conflated if some patients had either only periods of
wakefulness data or NREM sleep in the interictal sub-
sets of data used in the modeling. This could be one
reason why the delta power (1–4 Hz) of only half of
the patients was significantly different between the
two brain states. Qualitatively, all patients had periods
of increased delta power (see supplementary figures
2 and 3). However, relative delta power could only
be compared to ground truth expert sleep staging in
Patients 16 and 17. Other recent studies have used
quantitative methods to sleep stage iEEG data and
compared the results to expert sleep staging in all sub-
jects (Reed et al 2017, Kremen et al 2019).

On the other hand, in some studies it may be
desirable to identify periods of NREM sleep. In these
patients, fitting mixture models is an effective way of
obtaining information about HFO dynamics without
the need for concurrent EEG and manual sleep sta-
ging. Using the techniques presented here, there was
no need to sleep stage the data (such as in von Ellen-
rieder et al 2017) because the negative binomial (and
Poisson, see supplementals) mixture models auto-
matically identified changes in HFO dynamics over
time. Approximate sleep stages were automatically
obtained as a result of the distribution demixing. Our
method of performing SOZ classification with HFO
mixture modeling discussed in this paper should be
compared to (1) differentiating NREM from REM
and awake prior to HFO rate analysis, (2) analyzing
HFO dynamics coincident with high delta (1–4 Hz)
power as a proxy for NREM sleep, and (3) using auto-
matic iEEG sleep-staging (Reed et al 2017, Kremen
et al 2019).

The similarity of HFO rates in REM sleep com-
pared to HFO rates during wakefulness has previ-
ously been shown (Staba et al 2004). In two patients,
we found that the dynamics of HFOs during REM
and wakefulness are often similar within each chan-
nel. And in at least half the patients, this model-
derived brain state B, the brain state with the smal-
ler delta power (1–4 Hz), likely reflects REM and
wakefulness because there was a significant difference
in delta power between the two states. And we con-
firmed that model-derived brain state A did reflect
NREM sleep in two of these patients whose data was
sleep staged. It is also possible that the mixture mod-
eling captures interictal HFO dynamics independent
of sleep stage that are predictive of SOZ. However,
this possibility should be explored further in other
datasets.

6.3. Limitations of this study
Differences across patients and channels (such as dif-
ferences in electrode size and locations, differences in
brain shape and volume conduction, differences in
disease state, etc) may all play a role in the potential of
HFOs to predict pathological tissue. In our data, most
electrodeswere placed in the temporal or frontal lobes
based on the expected locus of epilepsy and other
surgical considerations, and thus our approach may
need to be validated using data from other cortical
locations. In addition, we did not show that the SOZ
could be predicted in Patient 14 using any parameter
(e.g. see figure 3). This patient had only one chan-
nel identified as SOZ by clinicians, making it difficult
to evaluate the prediction of SOZ and possibly led to
these near-chance outcomes. However the methods
presented in this paper were promising for the lim-
ited number of patients and brain regions explored
in this study. The importance of validating the pre-
dictive nature of these methods in additional patients
is obvious and cannot be overstated.

Note also that only 4 of the 16 patients were com-
pletely seizure-free after surgery, denoted by Engel
Outcomes IA in table 1 (Engel 1993). This is con-
sistent with the general notion that treatment of the
SOZ is often insufficient to prevent the occurrence of
seizures. Moreover, in some patients, the SOZ could
not be completely removed during surgery. Therefore
future studies should include a more detailed analysis
of electrodes within the resected volume in order to
make a quantitative comparison to surgical outcome.
This is amore valuable test of clinical utility, as it eval-
uates the ability of the quantitativemethod to identify
the EZ, rather than the SOZ (for which standard clin-
ical criteria already exist).

The choice of automatic detection algorithm and
detection parameters will also have a significant
impact on the results. We chose a simple algorithm,
due to the large amount of data to be analyzed, but
implementation of a more complex algorithm with
post-processing steps to reject false positive detec-
tions based on the time-frequency decomposition
may improve the specificity of the detection and clas-
sification of SOZ channels. For example, if the HFOs
occur in a regular, oscillatory pattern, the temporal
dynamics may appear more random or clumped with
the addition of false positives due to artifacts. The
use of a more specific detector may also enable the
application of these methods to scalp EEG (Zelmann
et al 2014, von Ellenrieder et al 2014, Kobayashi et al
2015, Gotman 2018, McCrimmon et al 2021), as false
positive detections due to muscle artifacts would be a
source of noise when assessing HFO dynamics on the
scalp (Nunez et al 2016, Bernardo et al 2018).

In our analysis, we treated all detected events
equally, without attempting to separate pathological
and physiological HFOs (e.g. see Liu et al 2018). It
is possible that these two types of HFOs have similar
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rates, but different temporal dynamics, in which case
our proposedmethod could help distinguish between
them. However, here we could only classify events
as being inside and outside the SOZ, which would
include both physiologicalHFOs and artifacts. There-
fore, this question must be more explicitly stud-
ied with cognitive paradigms to elicit physiological
HFOs, or the analysis could focus on the fast ripple
frequency band (250–500 Hz), which is hypothesized
to contain only pathological HFOs.

There may also be differences in pathological
HFO dynamics between intracranial depth electrodes
and cortical surface electrodes. These two types of
sensors record from different amounts of cortical
depth and volume, and intrinsic differences in neural
behavior between different spatial scales could exist
(Nunez et al 2019). We might even expect differ-
ences in neural behavior between iEEG electrodes
of different diameters at similar locations within the
same patient, due to these reasons (Nunez et al 2019).
Lastly, we would expect some depth iEEG electrodes
to be contaminated by noise, as the most lateral chan-
nels are sometimes outside the brain. There have
been conflicting reports on the effect of electrode size
on the ability to measure HFOs (Worrell et al 2008,
Châtillon et al 2013); in this study, we collapsed across
all types of intracranial electrodes.

Finally, our results contrast with previous res-
ults, such as work by Sumsky and Santaniello (2018),
who found that bursting patterns of HFOs are more
likely to be present in the SOZ. Both studies assumed
that 1 s windows of HFO counts were described by
particular count processes. However other model-
ing assumptions do differ between the two studies,
which could lead to contrasting results. We used neg-
ative binomial models to parameterize the count pro-
cess, while Sumsky and Santaniello (2018) used a
non-stationary point processmodel.We also built full
ROC curves for SOZ classification, which were not
used in the previous work. We therefore found it dif-
ficult to directly compare the classification results of
both works. Further study is needed to understand
differences in model predictions tested against large
amounts of data.

6.4. Future improvements to algorithmic
implementation
Faster methods of fitting Poisson and negative bino-
mial mixture models are necessary for these methods
to be applied in a clinical setting. In this study, we
wished to fit hierarchical models in order to under-
stand the relationship between channels and patients.
However, in future studies, simple algorithms to fit
mixture models of negative binomial distributions
and other distributions, such as presented by (Nagode
2015), may be sufficient.

Some models presented here did not converge as
judged by the Gelman–Rubin statistic, R̂, although

the median posterior parameters were still inform-
ative for SOZ classification. This seemed to be due
to the non-convergence of specific HFO rates and
oscillatory dynamics for subsets of channels in some
patients. This could be caused by artifacts being intro-
duced into the HFO rates by the automatic detec-
tion process or due to actual physiological or patholo-
gical deviations from that channel’s rate in that brain
state. It could be that the adaptive noise floor, which
changed every 5 min within each channel using our
automatic HFO detector (Charupanit and Lopour
2017), injected artifactual HFO dynamics into the
models. It is possible that fitting anHFO detector and
Poisson/negative binomial hierarchical models con-
currently would alleviate this convergence issue.

Model convergence is usually a bare minimum
for hierarchical Bayesian model building. However,
because the outcome of this study was SOZ classific-
ation and the non-converged models were still able
to classify SOZ and non-SOZ, the results are still
clinically relevant. Models that allow ‘noise’ in the
HFO dynamics to occur with some limited frequency
could alleviate this issue. This could facilitate model
convergence and may even yield better classification
of the SOZ. In pilot analyses, we were unable to fit
mixture models with three or four brain states in
JAGS with sufficient convergence of chains. Thus, the
resulting posterior distributions of HFO parameters
were difficult to interpret. We are unsure if the data
would be better described by amodel withmore brain
states. Future work should seek to expand the num-
ber of brain states while allowing for artifactual HFO
dynamics.

More complex hierarchical Bayesian models can
be fit that provide further inference about the HFO
dynamics and SOZ prediction. In particular, hier-
archical Bayesian models that predict SOZ directly
(instead of that prediction being derived from the
posterior distributions of parameters) would be use-
ful to assess the uncertainty in prediction. Also,
it would be desirable to have a single hierarchical
Bayesian model that includes all patients’ data, to
understand commonalities across all patients and
how SOZ prediction varies with individual differ-
ences in disease state. However, the computational
load of this model would be particularly high with
the multiple hours of HFO count data, and certain
‘big data’ management schemes would have to be
deployed. Future work should also seek to combine
both HFO dynamics (CCs and CVs) and HFO rates
for SOZpredictionwithin hierarchical Bayesianmod-
els, especially because some patients’ SOZ were bet-
ter predicted by HFO rates (compare figures 3, 5, and
6). This may suggest that complementary informa-
tion for SOZ prediction is provided by HFO dynam-
ics and HFO rates. Such hierarchical Bayesian models
should be compared to similar endeavors to com-
bine features for SOZ prediction during interictal
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periods using machine learning and artificial intelli-
gence techniques (Varatharajah et al 2018, Cimbal-
nik et al 2019, Weiss et al 2019). Finally, including
other possibly predictive data such as delta (1–4 Hz)
power, sleep stage, patient information, etc, directly
into these hierarchical models could improve SOZ
prediction. We felt as though many of these mod-
els were outside the scope of this paper, and each
new model developed must be rigorously tested and
tuned. Thus, we view this paper as the first step into
a possible use of hierarchical Bayesian techniques in
the prediction of SOZ with interictal iEEG data, and
we look forward to further work on the topic.
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