3 research outputs found

    Discovery of Potent Heterodimeric Antagonists of Inhibitor of Apoptosis Proteins (IAPs) with Sustained Antitumor Activity

    No full text
    The prominent role of IAPs in controlling cell death and their overexpression in a variety of cancers has prompted the development of IAP antagonists as potential antitumor therapies. We describe the identification of a series of heterodimeric antagonists with highly potent antiproliferative activities in cIAP- and XIAP-dependent cell lines. Compounds <b>15</b> and <b>17</b> further demonstrate curative efficacy in human melanoma and lung cancer xenograft models and are promising candidates for advanced studies

    Discovery of Potent Heterodimeric Antagonists of Inhibitor of Apoptosis Proteins (IAPs) with Sustained Antitumor Activity

    No full text
    The prominent role of IAPs in controlling cell death and their overexpression in a variety of cancers has prompted the development of IAP antagonists as potential antitumor therapies. We describe the identification of a series of heterodimeric antagonists with highly potent antiproliferative activities in cIAP- and XIAP-dependent cell lines. Compounds <b>15</b> and <b>17</b> further demonstrate curative efficacy in human melanoma and lung cancer xenograft models and are promising candidates for advanced studies

    Dimeric Macrocyclic Antagonists of Inhibitor of Apoptosis Proteins for the Treatment of Cancer

    No full text
    A series of dimeric macrocyclic compounds were prepared and evaluated as antagonists for inhibitor of apoptosis proteins. The most potent analogue <b>11</b>, which binds to XIAP and c-IAP proteins with high affinity and induces caspase-3 activation and ultimately cell apoptosis, inhibits growth of human melanoma and colorectal cell lines at low nanomolar concentrations. Furthermore, compound <b>11</b> demonstrated significant antitumor activity in the A875 human melanoma xenograft model at doses as low as 2 mg/kg on a q3d schedule
    corecore