49 research outputs found

    Get5 Carboxyl-terminal Domain Is a Novel Dimerization Motif That Tethers an Extended Get4/Get5 Complex

    Get PDF
    Tail-anchored trans-membrane proteins are targeted to membranes post-translationally. The proteins Get4 and Get5 form an obligate complex that catalyzes the transfer of tail-anchored proteins destined to the endoplasmic reticulum from Sgt2 to the cytosolic targeting factor Get3. Get5 forms a homodimer mediated by its carboxyl domain. We show here that a conserved motif exists within the carboxyl domain. A high resolution crystal structure and solution NMR structures of this motif reveal a novel and stable helical dimerization domain. We additionally determined a solution NMR structure of a divergent fungal homolog, and comparison of these structures allows annotation of specific stabilizing interactions. Using solution x-ray scattering and the structures of all folded domains, we present a model of the full-length Get4/Get5 complex

    Structures of the Sgt2/SGTA Dimerization Domain with the Get5/UBL4A UBL Domain Reveal an Interaction that Forms a Conserved Dynamic Interface

    Get PDF
    In the cytoplasm, the correct delivery of membrane proteins is an essential and highly regulated process. The posttranslational targeting of the important tail-anchor membrane (TA) proteins has recently been under intense investigation. A specialized pathway, called the guided entry of TA proteins (GET) pathway in yeast and the transmembrane domain recognition complex (TRC) pathway in vertebrates, recognizes endoplasmic-reticulum-targeted TA proteins and delivers them through a complex series of handoffs. An early step is the formation of a complex between Sgt2/SGTA, a cochaperone with a presumed ubiquitin-like-binding domain (UBD), and Get5/UBL4A, a ubiquitin-like domain (UBL)-containing protein. We structurally characterize this UBD/UBL interaction for both yeast and human proteins. This characterization is supported by biophysical studies that demonstrate that complex formation is mediated by electrostatics, generating an interface that has high-affinity with rapid kinetics. In total, this work provides a refined model of the interplay of Sgt2 homologs in TA targeting

    Upper Toarcian (Lower Jurassic) marine gastropods from the Cleveland Basin, England: systematics, palaeobiogeography and contribution to biotic recovery from the early Toarcian extinction event

    Get PDF
    Here we describe a new upper Toarcian (Lower Jurassic) marine gastropod fauna from rocks of the Cleveland Basin exposed on the North Yorkshire coast of England. The fossil assemblage consists of 16 species, of which three are new: Katosira ? bicarinata sp. nov., Turritelloidea stepheni sp. nov. and Striactaenonina elegans sp. nov. Four species are described in open nomenclature as Tricarilda ? sp., Jurilda sp., Cylindrobullina sp. and Cossmannina sp. The other species have previously been described: Coelodiscus minutus (Schübler in Zieten), Procerithium quadrilineatum (Römer), Pseudokatosira undulata (Benz in von Zieten), Palaeorissoina aff. acuminata (Gründel), Pietteia unicarinata (Hudleston), Globularia cf. canina (Hudleston), Striactaeonina cf. richterorum Schulbert & Nützel, Striactaenonina aff. tenuistriata (Hudleston) and Sulcoactaeon sedgvici (Phillips). Most of these species are the earliest records of their respective genera and show palaeobiogeographical connections with contemporary gastropod associations from other regions of Europe and South America. The taxonomic composition of the upper Toarcian Cleveland Basin gastropod assemblage differs substantially from the faunas of the upper Pliensbachian and lower Toarcian Tenuicostatum Zone, showing the strong effect of the early Toarcian mass extinction event on the marine gastropod communities in the basin. Only a few gastropod species are shared between the late Toarcian faunas and the much more diverse Aalenian gastropod faunas in the Cleveland Basin, suggesting that there was a facies control on gastropod occurrences at that time. This is also a potential explanation for the taxonomic differences between the late Toarcian gastropod faunas in the Cleveland Basin and those in France, and northern and southern Germany

    Isozyme-Specific Ligands for O-acetylserine sulfhydrylase, a Novel Antibiotic Target

    Get PDF
    Conceived and designed the experiments: FS PC BC ES AM. Performed the experiments: FS RS ES PF SR. Analyzed the data: FS BC ES PF GEK PFC AM. Contributed reagents/materials/analysis tools: PC PB GC. Wrote the paper: FS GEK BC AM.The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance. Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were identified with dissociation constants of 3.7 and 33 µM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B exhibits a dissociation constant of 29 µM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 µM for O-acetylserine sulfhydrylase-B and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to completely block bacterial cysteine biosynthesis.Yeshttp://www.plosone.org/static/editorial#pee

    Lexitran-mediated access to patent databases

    No full text
    corecore