136 research outputs found

    Mechanics of the cellular actin cortex: from signalling to shape change

    Get PDF
    The actin cortex is a thin layer of actin, myosin, and actin binding proteins that underlies the membrane of most animal cells. It is highly dynamic and can undergo remodelling on time-scales of tens of seconds thanks to protein turnover and myosin-mediated contractions. The cortex enables cells to resist external mechanical stresses, controls cell shape, and allows cells to exert forces on their neighbours. Thus, its mechanical properties are key to its physiological function. Here, we give an overview of how cortex composition, structure, and dynamics control cortex mechanics and cell shape. We use mitosis as an example to illustrate how global and local regulation of cortex mechanics give rise to a complex series of cell shape changes.Comment: Revie

    Poroelastic osmoregulation of living cell volume

    Get PDF
    Cells maintain their volume through fine intracellular osmolarity regulation. Osmotic challenges drive fluid into or out of cells causing swelling or shrinkage, respectively. The dynamics of cell volume changes depending on the rheology of the cellular constituents and on how fast the fluid permeates through the membrane and cytoplasm. We investigated whether and how poroelasticity can describe volume dynamics in response to osmotic shocks. We exposed cells to osmotic perturbations and used defocusing epifluorescence microscopy on membrane-attached fluorescent nanospheres to track volume dynamics with high spatiotemporal resolution. We found that a poroelastic model that considers both geometrical and pressurization rates captures fluid-cytoskeleton interactions, which are rate-limiting factors in controlling volume changes at short timescales. Linking cellular responses to osmotic shocks and cell mechanics through poroelasticity can predict the cell state in health, disease, or in response to novel therapeutics.Peer ReviewedPostprint (published version

    An open access microfluidic device for the study of the physical limits of cancer cell deformation during migration in confined environments

    Get PDF
    During metastasis, cancerous cells leave the primary tumour, pass into the circulatory system, and invade into new tissues. To migrate through the wide variety of environments they encounter, the cells must be able to remodel their cell shape efficiently to squeeze through small gaps in the extracellular matrix or extravasate into the blood stream or lymphatic system. Several studies have shown that the nucleus is the main limiting factor to migration through small gaps (Wolf et al., 2013; Harada et al., 2014; Mak et al., 2013). To understand the physical limits of cancer cell translocation in confined environments, we have fabricated a microfluidic device to study their ability to adapt their nuclear and cellular shape when passing through small gaps. The device is open access for ease of use and enables examination of the effect of different levels of spatial confinement on cell behaviour and morphology simultaneously. The results show that increasing cell confinement decreases the ability of cells to translocate into small gaps and that cells cannot penetrate into the microchannels below a threshold cross-section

    Optogenetic control of cellular forces and mechanotransduction

    Get PDF
    Contractile forces are the end effectors of cell migration, division, morphogenesis, wound healing and cancer invasion. Here we report optogenetic tools to upregulate and downregulate such forces with high spatiotemporal accuracy. The technology relies on controlling the subcellular activation of RhoA using the CRY2/CIBN light-gated dimerizer system. We fused the catalytic domain (DHPH domain) of the RhoA activator ARHGEF11 to CRY2-mCherry (optoGEF-RhoA) and engineered its binding partner CIBN to bind either to the plasma membrane or to the mitochondrial membrane. Translocation of optoGEF-RhoA to the plasma membrane causes a rapid and local increase in cellular traction, intercellular tension and tissue compaction. By contrast, translocation of optoGEF-RhoA to mitochondria results in opposite changes in these physical properties. Cellular changes in contractility are paralleled by modifications in the nuclear localization of the transcriptional regulator YAP, thus showing the ability of our approach to control mechanotransductory signalling pathways in time and space

    Comparing System-response Retrieval Models for Open-domain and Casual Conversational Agent

    Get PDF
    International audienceThis paper studies corpus-based process to select a system-response usable both in chatterbot or as a fallback strategy. It presents, evaluates and compares two selection methods that retrieve and adapt a system-response from the OpenSubtitles2016 corpus given a human-utterance. A corpus of 800 annotated pairs is constituted. Evaluation consists in objective metrics and subjective annotation based on the validity schema proposed in the RE-WOCHAT shared task. Our study indicates that the task of assessing the validity of a system-response given a human-utterance is subjective to an important extent, and is thus a difficult task. Comparisons show that the selection method based on word embedding performs objectively better than the one based on TF-IDF in terms of response variety and response length

    The effect of aperture size on gigaseal formation

    Get PDF
    Patch clamping, the gold standard for ion channel studies, is entirely dependent on formation of a high resistance seal between cell membrane and patching site,known as gigaseal. As this process is laborious and time consuming, there have been many attempts to develop automated high throughput chip-based patch clamping devices. In spite of recent advances, these devices still cannot form gigaseals relying instead on less tight seals that impede their ability to measure the pA ionic currents passing through single ion channels. Progress is presently limited due to a lack of understanding of the physical and chemical mechanisms underlying gigaseal formation. In all forms of patch clamping access to the cell is achieved via a small aperture. Here, we systematically examine the influence of aperture size, micropipette rim morphology, and surface roughness on gigaseal formation in conventional patch clamping using micro/nanofabrication and modelling techniques. Our results show that smaller aperture sizes lead to improved seal formation within a range of x-y. For aperture sizes out of this range, either bigger or smaller, gigaseal formation is very difficult if not impossible. While in the literature the surface quality of patching sites is only described by average surface roughness, this research reveals that parameters such as: developed interfacial area ratio, valley void volume of the surface, ratio of core void volume to core material volume, and maximum peak to valley distance play more important roles in seal formation. Furthermore,these parameters are size dependent; as a result glass micropipettes with smaller aperture sizes are flatter and have lower water retentionability resulting in better seals. Results of this work support the practical knowledge that pipettes having smaller apertures form better seals

    Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers

    Get PDF
    Turnover of actin filaments in cells requires rapid actin disassembly in a cytoplasmic environment that thermodynamically favors assembly because of high concentrations of polymerizable monomers. We here image the disassembly of single actin filaments by cofilin, coronin, and actin-interacting protein 1, a purified protein system that reconstitutes rapid, monomer-insensitive disassembly (Brieher, W.M., H.Y. Kueh, B.A. Ballif, and T.J. Mitchison. 2006. J. Cell Biol. 175:315–324). In this three-component system, filaments disassemble in abrupt bursts that initiate preferentially, but not exclusively, from both filament ends. Bursting disassembly generates unstable reaction intermediates with lowered affinity for CapZ at barbed ends. CapZ and cytochalasin D (CytoD), a barbed-end capping drug, strongly inhibit bursting disassembly. CytoD also inhibits actin disassembly in mammalian cells, whereas latrunculin B, a monomer sequestering drug, does not. We propose that bursts of disassembly arise from cooperative separation of the two filament strands near an end. The differential effects of drugs in cells argue for physiological relevance of this new disassembly pathway and potentially explain discordant results previously found with these drugs

    Reassembly of contractile actin cortex in cell blebs

    Get PDF
    Contractile actin cortex is involved in cell morphogenesis, movement, and cytokinesis, but its organization and assembly are poorly understood. During blebbing, the membrane detaches from the cortex and inflates. As expansion ceases, contractile cortex reassembles under the membrane and drives bleb retraction. This cycle enabled us to measure the temporal sequence of protein recruitment to the membrane during cortex reassembly and to explore dependency relationships. Expanding blebs were devoid of actin, but proteins of the erythrocytic submembranous cytoskeleton were present. When expansion ceased, ezrin was recruited to the membrane first, followed by actin, actin-bundling proteins, and, finally, contractile proteins. Complete assembly of the contractile cortex, which was organized into a cagelike mesh of filaments, took ∼30 s. Cytochalasin D blocked recruitment of actin and α-actinin, but had no effect on membrane association of ankyrin B and ezrin. Ezrin played no role in actin nucleation, but was essential for tethering the membrane to the cortex. The Rho pathway was important for cortex assembly in blebs

    BMC Biology BMC Biology The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force

    Get PDF
    International audienceBackgroundThe public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their closely related causative agents Toxoplasma and Plasmodium, respectively to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their hosting cells has been highlighted as a high priority research with the relevant perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanistic base of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell junction but this model lacks direct evidence and has been challenged by recent genetic and cell biology studies. In this work, using parasites expressing the fluorescent core component of this junction, we analyse characteristic features of the kinematics of penetration of more than 1000 invasion events.ResultsThe majority of invasion events occur with a typical forward rotational progression of the parasite through a static junction into a vacuole formed from the invaginating host cell plasma membrane, in which the parasite subsequently replicates. However, if parasites encounter resistance and if the junction is not strongly anchored to the host cell cortex, as when parasites do not secrete the toxofilin protein and therefore are unable to locally remodel the cortical actin cytoskeleton, the junction is capped backwards and travels retrogradely with the host cell membrane along the parasite surface as it is enclosed within a functional vacuole. Kinetic measurements of the invasive trajectories strongly support a similar parasite driven force in both static and capped junctions, both of which lead to successful invasion. However about 20% of toxofilin mutants fail to enter and eventually disengage from the host cell membrane while the secreted RON2 molecules are capped at the posterior pole before being cleaved and released in the medium. By contrast in cells characterized by low cortex tension and high cortical actin dynamics, junction capping and entry failure are drastically reduced.ConclusionThis kinematic analysis of pre-invasive and invasive T. gondii tachyzoite behaviors newly highlights that to invade cells, parasites need to engage their motor with the junction molecular complex where force is efficiently applied only upon proper anchorage to the host cell membrane and cortex
    corecore