186 research outputs found

    A Neuro-computational Account of Arbitration between Choice Imitation and Goal Emulation during Human Observational Learning

    Get PDF
    When individuals learn from observing the behavior of others, they deploy at least two distinct strategies. Choice imitation involves repeating other agents’ previous actions, whereas emulation proceeds from inferring their goals and intentions. Despite the prevalence of observational learning in humans and other social animals, a fundamental question remains unaddressed: how does the brain decide which strategy to use in a given situation? In two fMRI studies (the second a pre-registered replication of the first), we identify a neuro-computational mechanism underlying arbitration between choice imitation and goal emulation. Computational modeling, combined with a behavioral task that dissociated the two strategies, revealed that control over behavior was adaptively and dynamically weighted toward the most reliable strategy. Emulation reliability, the model’s arbitration signal, was represented in the ventrolateral prefrontal cortex, temporoparietal junction, and rostral cingulate cortex. Our replicated findings illuminate the computations by which the brain decides to imitate or emulate others

    The Application of Computational Models to Social Neuroscience: Promises and Pitfalls

    Get PDF
    Interactions with conspecifics are key to any social species. In order to navigate this social world, it is crucial for individuals to learn from and about others. Whether it is learning a new skill by observing a parent perform it, avoiding negative outcomes, or making complex collective decisions, understanding the mechanisms underlying such social cognitive processes has been of considerable interest to psychologists and neuroscientists, particularly to studies of learning and decision-making. Here, we review studies that have used computational modelling techniques, combined with neuroimaging, to shed light on how people learn and make decisions in social contexts. As opposed to previous methods used in social neuroscience studies, the computational approach allows one to directly examine where in the brain particular computations, as estimated by models of behavior, are implemented. Similar to studies of experiential learning, findings suggest that learning from others can be implemented using several strategies: vicarious reward learning, where one learns from observing the reward outcomes of another agent; action imitation, which relies on encoding a prediction error between the expected and actual actions of the other agent; and social inference, where one learns by inferring the goals and intentions of others. These strategies rely on distinct neural networks, which may be recruited adaptively depending on task demands, the environment and other social factors

    Neuro-computational account of arbitration between imitation and emulation during human observational learning

    Get PDF
    In observational learning (OL), organisms learn from observing the behavior of others. There are at least two distinct strategies for OL. Imitation involves learning to repeat the previous actions of other agents, while in emulation, learning proceeds from inferring the goals and intentions of others. While putative neural correlates for these forms of learning have been identified, a fundamental question remains unaddressed: how does the brain decides which strategy to use in a given situation? Here we developed a novel computational model in which arbitration between the strategies is determined by the predictive reliability, such that control over behavior is adaptively weighted toward the strategy with the most reliable prediction. To test the theory, we designed a novel behavioral task in which our experimental manipulations produced dissociable effects on the reliability of the two strategies. Participants performed this task while undergoing fMRI in two independent studies (the second a pre-registered replication of the first). Behavior manifested patterns consistent with both emulation and imitation and flexibly changed between the two strategies as expected from the theory. Computational modelling revealed that behavior was best described by an arbitration model, in which the reliability of the emulation strategy determined the relative weights allocated to behavior for each strategy. Emulation reliability - the model's arbitration signal - was encoded in the ventrolateral prefrontal cortex, temporoparietal junction and rostral cingulate cortex. Being replicated across two fMRI studies, these findings suggest a neuro-computational mechanism for allocating control between emulation and imitation during observational learning

    Neuro-computational account of arbitration between imitation and emulation during human observational learning

    Get PDF
    In observational learning (OL), organisms learn from observing the behavior of others. There are at least two distinct strategies for OL. Imitation involves learning to repeat the previous actions of other agents, while in emulation, learning proceeds from inferring the goals and intentions of others. While putative neural correlates for these forms of learning have been identified, a fundamental question remains unaddressed: how does the brain decides which strategy to use in a given situation? Here we developed a novel computational model in which arbitration between the strategies is determined by the predictive reliability, such that control over behavior is adaptively weighted toward the strategy with the most reliable prediction. To test the theory, we designed a novel behavioral task in which our experimental manipulations produced dissociable effects on the reliability of the two strategies. Participants performed this task while undergoing fMRI in two independent studies (the second a pre-registered replication of the first). Behavior manifested patterns consistent with both emulation and imitation and flexibly changed between the two strategies as expected from the theory. Computational modelling revealed that behavior was best described by an arbitration model, in which the reliability of the emulation strategy determined the relative weights allocated to behavior for each strategy. Emulation reliability - the model's arbitration signal - was encoded in the ventrolateral prefrontal cortex, temporoparietal junction and rostral cingulate cortex. Being replicated across two fMRI studies, these findings suggest a neuro-computational mechanism for allocating control between emulation and imitation during observational learning

    A Neuro-computational Account of Arbitration between Choice Imitation and Goal Emulation during Human Observational Learning

    Get PDF
    When individuals learn from observing the behavior of others, they deploy at least two distinct strategies. Choice imitation involves repeating other agents’ previous actions, whereas emulation proceeds from inferring their goals and intentions. Despite the prevalence of observational learning in humans and other social animals, a fundamental question remains unaddressed: how does the brain decide which strategy to use in a given situation? In two fMRI studies (the second a pre-registered replication of the first), we identify a neuro-computational mechanism underlying arbitration between choice imitation and goal emulation. Computational modeling, combined with a behavioral task that dissociated the two strategies, revealed that control over behavior was adaptively and dynamically weighted toward the most reliable strategy. Emulation reliability, the model’s arbitration signal, was represented in the ventrolateral prefrontal cortex, temporoparietal junction, and rostral cingulate cortex. Our replicated findings illuminate the computations by which the brain decides to imitate or emulate others

    Anxiety increases information-seeking in response to large changes

    Get PDF
    Seeking information when anxious may help reduce the aversive feeling of uncertainty and guide decision-making. If information is negative or confusing, however, this may increase anxiety further. Information gathered under anxiety can thus be beneficial and/or damaging. Here, we examine whether anxiety leads to a general increase in information-seeking, or rather to changes in the type of information and/or situations in which it is sought. In two controlled laboratory studies, we show that both trait anxiety and induced anxiety lead to a selective alteration in information-seeking. In particular, anxiety did not enhance the general tendency to seek information, nor did it alter the valence of the information gathered. Rather, anxiety amplified the tendency to seek information more in response to large changes in the environment. This was true even when the cause of the anxiety was not directly related to the information sought. As anxious individuals have been shown to have problems learning in changing environments, greater information-seeking in such environments may be an adaptive compensatory mechanism
    corecore