661 research outputs found

    Clouds, Clumps, Cores & Comets - a Cosmic Chemical Connection?

    Full text link
    We discuss the connection between the chemistry of dense interstellar clouds and those characteristics of cometary matter that could be remnants of it. The chemical evolution observed to occur in molecular clouds is summarized and a model for dense core collapse that can plausibly account for the isotopic fractionation of hydrogen, nitrogen, oxygen and carbon measured in primitive solar system materials is presented.Comment: to be published in Advances in Geoscience

    Isotopic Anomalies in Primitive Solar System Matter: Spin-state Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    Get PDF
    Organic material found in meteorites and interplanetary dust particles is enriched in D and 15N. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar nebula. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and 15N and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large 15N enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, 15N enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both 15N and D in dense cloud cores. We also show that while the nitriles, HCN and HNC, contain the greatest 15N enrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support the view that Solar System 15N and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.Comment: Submitted to ApJ

    Observations of Isotope Fractionation in Prestellar Cores: Interstellar Origin of Meteoritic Hot Spot?

    Get PDF
    Isotopically fractionated material is found in many solar system objects, including meteorites and comets. It is thought, in some cases, to trace interstellar material that was incorporated into the solar system without undergoing significant processing. Here, we show the results of models and observations of the nitrogen and carbon fractionation in proto-stellar cores

    Observations of Nitrogen Fractionation in Prestellar Cores: Nitriles Tracing Interstellar Chemistry

    Get PDF
    Primitive materials provide important clues on the processes that occurred during the formation and early evolution of the Solar System. Space-based and ground-based observations of cometary comae show that comets appear to contain a mixture of the products of both interstellar and nebular chemistries. Significant 15-nitrogen enrichments have been measured in CN and HCN towards a number of comets and may suggest an origin of interstellar chemical fractionation. Additionally, large N-15 enhancements are found in meteorites and has also led to to the view that the N-15 traces material formed in the interstellar medium (ISM), although multiple sources cannot be excluded. Here, we show the results of observations of the nitrogen and carbon fractionation in prestellar cores for various N-bearing species to decipher the origin of primitive material isotopic enrichments

    Models for Cometary Comae Containing Negative Ions

    Get PDF
    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry

    Chemical chronology of the Southern Coalsack

    Full text link
    We demonstrate how the observed H2O ice column densities toward three dense globules in the Southern Coalsack could be used to constrain the ages of these sources. We derive ages of ~10^5 yr, in agreement with dynamical studies of these objects. We have modelled the chemical evolution of the globules, and show how the molecular abundances are controlled by both the gas density and the initial chemical conditions as the globules formed. Based on our derived ages, we predict the column densities of several species of interest. These predictions should be straightforward to test by performing molecular line observationsComment: 10 pages, 4 figures, in press at MNRA

    Ammonia Imaging of the Disks in the NGC 1333 IRAS 4A Protobinary System

    Full text link
    The NGC 1333 IRAS 4A protobinary was observed in the ammonia (2, 2) and (3, 3) lines and in the 1.3 cm continuum with a high resolution (about 1.0 arcsec). The ammonia maps show two compact sources, one for each protostar, and they are probably protostellar accretion disks. The disk associated with IRAS 4A2 is seen nearly edge-on and shows an indication of rotation. The A2 disk is brighter in the ammonia lines but dimmer in the dust continuum than its sibling disk, with the ammonia-to-dust flux ratios different by about an order of magnitude. This difference suggests that the twin disks have surprisingly dissimilar characters, one gas-rich and the other dusty. The A2 disk may be unusually active or hot, as indicated by its association with water vapor masers. The existence of two very dissimilar disks in a binary system suggests that the formation process of multiple systems has a controlling agent lacking in the isolated star formation process and that stars belonging to a multiple system do not necessarily evolve in phase with each other

    Hydrogen Isocyanide in Comet 73P/Schwassmann-Wachmann (Fragment B)

    Get PDF
    We present a sensitive 3-sigma upper limit of 1.1% for the HNC/HCN abundance ratio in comet 73P/Schwassmann-Wachmann (Fragment B), obtained on May 10-11, 2006 using Caltech Submillimeter Observatory (CSO). This limit is a factor of ~7 lower than the values measured previously in moderately active comets at 1 AU from the Sun. Comet 73P/Schwassmann-Wachmann was depleted in most volatile species, except of HCN. The low HNC/HCN ratio thus argues against HNC production from polymers produced from HCN. However, thermal degradation of macromolecules, or polymers, produced from ammonia and carbon compounds, such as acetylene, methane, or ethane appears a plausible explanation for the observed variations of the HNC/HCN ratio in moderately active comets, including the very low ratio in comet 73P/Schwassmann-Wachmann reported here. Similar polymers have been invoked previously to explain anomalous 14N/15N ratios measured in cometary CN.Comment: 6 pages, 5 figures, 2 table
    corecore