5 research outputs found

    Congenital and Disseminated Pyogenic Granuloma-like Vascular Lesions

    No full text
    International audienceWe report an exceptional case of multiple cutaneous and visceral neonatal pyogenic granuloma (PG) initially suggestive of a diffuse neonatal haemangiomatosis. CASE REPORT A full-term female newborn, with no significant past medical history, was referred to our department for treatment of an acute respiratory distress syndrome of neurological origin at day 8 of life. At birth, she presented with 3 small angiomatous papules and 4 subcutaneous nodules suggestive of neonatal hae-mangiomatosis (NH) (Fig. 1). A brain MRI revealed a highly vascularised brain stem tumour suggestive of glioma (Fig. 2), associated with 2 abnormal hepatic lesions consistent with infantile haemangiomas (IH) on ultrasound and CT scan. Methylprednisolone was started for the suspected glioma-associated oedema, and vincristine and propranolol were introduced for NH. After initial improvement, an acute intracranial hypertension related to cystic evolution of the disease necessitated surgical resection at the age of 2 months. Pathological examinations of the brain, cutaneous and subcutaneous lesions were similar, showing a vascular lobular proliferation of capillaries highly suggestive of PG. The misdiagnosis of glioma was eliminated. The GLUT-1 antigen marker was negative, ruling out the diagnosis of NH-like infantile haemangioma (Fig. 3). Lymphatic marker (D2-40) was also negative and eliminated a multifocal lymphangioendotheliomato-sis with thrombocytopaenia (MLT). Cutaneous and hepatic lesions gradually regressed. She is currently in complete remission after completing a treatment over 18 months with propranolol but a spontaneous improvement can not be excluded. DISCUSSIO

    Macrophage IL-1β-positive microvesicles exhibit thrombo-inflammatory properties and are detectable in patients with active juvenile idiopathic arthritis

    Get PDF
    ObjectiveIL-1β is a leaderless cytokine with poorly known secretory mechanisms that is barely detectable in serum of patients, including those with an IL-1β-mediated disease such as systemic juvenile idiopathic arthritis (sJIA). Leukocyte microvesicles (MVs) may be a mechanism of IL-1β secretion. The first objective of our study was to characterize IL-1β-positive MVs obtained from macrophage cell culture supernatants and to investigate their biological functions in vitro and in vivo. The second objective was to detect circulating IL-1β-positive MVs in JIA patients.MethodsMVs were purified by serial centrifugations from PBMCs, or THP-1 differentiated into macrophages, then stimulated with LPS ± ATP. MV content was analyzed for the presence of IL-1β, NLRP3 inflammasome, caspase-1, P2X7 receptor, and tissue factor (TF) using ELISA, Western blot, or flow cytometry. MV biological properties were studied in vitro by measuring VCAM-1, ICAM-1, and E-selectin expression after HUVEC co-culture and factor-Xa generation test was realized. In vivo, MVs’ ability to recruit leukocytes in a murine model of peritonitis was evaluated. Plasmatic IL-1β-positive MVs were studied ex vivo in 10 active JIA patients using flow cytometry.ResultsTHP-1-derived macrophages stimulated with LPS and ATP released MVs, which contained NLRP3, caspase-1, and the 33-kDa precursor and 17-kDa mature forms of IL-1β and bioactive TF. IL-1β-positive MVs expressed P2X7 receptor and released soluble IL-1β in response to ATP stimulation in vitro. In mice, MVs induced a leukocyte peritoneal infiltrate, which was reduced by treatment with the IL-1 receptor antagonist. Finally, IL-1β-positive MVs were detectable in plasma from 10 active JIA patients.ConclusionMVs shed from activated macrophages contain IL-1β, NLRP3 inflammasome components, and TF, and constitute thrombo-inflammatory vectors that can be detected in the plasma from active JIA patients

    Real-Life Indications of Interleukin-1 Blocking Agents in Hereditary Recurrent Fevers: Data From the JIRcohort and a Literature Review

    Get PDF
    International audienceBackground Interleukin (IL)-1 inhibitors represent the main treatment in patients with colchicine-resistant/intolerant familial Mediterranean fever (crFMF), mevalonate kinase deficiency (MKD), and tumor necrosis factor receptor-associated periodic syndrome (TRAPS). However, the reasons for the use of IL-1 inhibitors in these diseases are still not completely clarified. Objective Identify real-life situations that led to initiating anakinra or canakinumab treatment in hereditary recurrent fevers (HRFs), combining data from an international registry and an up-to-date literature review. Patients and Methods Data were extracted from the JIRcohort, in which clinical information (demographic data, treatment, disease activity, and quality of life) on patients with FMF, MKD, and TRAPS was retrospectively collected. A literature search was conducted using Medline, EMBASE, and Cochrane databases. Results Complete data of 93 patients with HRF (53.8% FMF, 31.2% MKD, and 15.1% TRAPS) were analyzed. Data from both the registry and the literature review confirmed that the main reasons for use of IL-1 blockers were the following: failure of previous treatment (n = 57, 61.3% and n = 964, 75.3%, respectively), persistence of disease activity with frequent attacks (n = 44, 47.3% and n = 1,023, 79.9%) and/or uncontrolled inflammatory syndrome (n = 46, 49.5% and n = 398, 31.1%), severe disease complication or associated comorbidities (n = 38, 40.9% and n = 390, 30.4%), and worsening of patients’ quality of life (n = 36, 38.7% and n = 100, 7,8%). No reasons were specified for 12 (16.4%) JIRcohort patients and 154 (12%) patients in the literature. Conclusion In the absence of standardized indications for IL-1 inhibitors in crFMF, MKD, and TRAPS, these results could serve as a basis for developing a treat-to-target strategy that would help clinicians codify the therapeutic escalation with IL-1 inhibitors.RAISE (Centre de ré fé rence des rhumatismes inflammatoires et maladies auto-immunes systé miques de l'enfant)

    Macrophage IL-1β-positive microvesicles exhibit thrombo-inflammatory properties and are detectable in patients with active juvenile idiopathic arthritis

    No full text
    International audienceObjective IL-1β is a leaderless cytokine with poorly known secretory mechanisms that is barely detectable in serum of patients, including those with an IL-1β-mediated disease such as systemic juvenile idiopathic arthritis (sJIA). Leukocyte microvesicles (MVs) may be a mechanism of IL-1β secretion. The first objective of our study was to characterize IL-1β-positive MVs obtained from macrophage cell culture supernatants and to investigate their biological functions in vitro and in vivo . The second objective was to detect circulating IL-1β-positive MVs in JIA patients. Methods MVs were purified by serial centrifugations from PBMCs, or THP-1 differentiated into macrophages, then stimulated with LPS ± ATP. MV content was analyzed for the presence of IL-1β, NLRP3 inflammasome, caspase-1, P2X7 receptor, and tissue factor (TF) using ELISA, Western blot, or flow cytometry. MV biological properties were studied in vitro by measuring VCAM-1, ICAM-1, and E-selectin expression after HUVEC co-culture and factor-Xa generation test was realized. In vivo , MVs’ ability to recruit leukocytes in a murine model of peritonitis was evaluated. Plasmatic IL-1β-positive MVs were studied ex vivo in 10 active JIA patients using flow cytometry. Results THP-1-derived macrophages stimulated with LPS and ATP released MVs, which contained NLRP3, caspase-1, and the 33-kDa precursor and 17-kDa mature forms of IL-1β and bioactive TF. IL-1β-positive MVs expressed P2X7 receptor and released soluble IL-1β in response to ATP stimulation in vitro . In mice, MVs induced a leukocyte peritoneal infiltrate, which was reduced by treatment with the IL-1 receptor antagonist. Finally, IL-1β-positive MVs were detectable in plasma from 10 active JIA patients. Conclusion MVs shed from activated macrophages contain IL-1β, NLRP3 inflammasome components, and TF, and constitute thrombo-inflammatory vectors that can be detected in the plasma from active JIA patients
    corecore