11 research outputs found

    Differential effects of inhibitors of the PI3K/mTOR pathway on the expansion and functionality of regulatory T cells

    Get PDF
    AbstractThe PI3K/mTOR pathway is commonly deregulated in cancer. mTOR inhibitors are registered for the treatment of several solid tumors and novel inhibitors are explored clinically. Notably, this pathway also plays an important role in immunoregulation. While mTOR inhibitors block cell cycle progression of conventional T cells (Tconv), they also result in the expansion of CD4+CD25hiFOXP3+ regulatory T cells (Tregs), and this likely limits their clinical antitumor efficacy. Here, we compared the effects of dual mTOR/PI3K inhibition (using BEZ235) to single PI3K (using BKM120) or mTOR inhibition (using rapamycin and everolimus) on Treg expansion and functionality. Whereas rapamycin, everolimus and BEZ235 effected a relative expansion benefit for Tregs and increased their overall suppressive activity, BKM120 allowed for similar expansion rates of Tregs and Tconv without altering their overall suppressive activity. Therefore, PI3K inhibition alone might offer antitumor efficacy without the detrimental selective expansion of Tregs associated with mTOR inhibition

    Phase I-II study of everolimus and low-dose oral cyclophosphamide in patients with metastatic renal cell cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For patients with metastatic renal cell cancer (mRCC) who progressed on vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor therapy, the orally administered mammalian target of rapamycin (mTOR) inhibitor everolimus has been shown to prolong progression free survival. Intriguingly, inhibition of mTOR also promotes expansion of immunosuppressive regulatory T cells (Tregs) that can inhibit anti-tumor immune responses in a clinically relevant way in various tumor types including RCC. This study intends to investigate whether the antitumor efficacy of everolimus can be increased by preventing the detrimental everolimus induced expansion of Tregs using a metronomic schedule of cyclophosphamide.</p> <p>Methods/design</p> <p>This phase I-II trial is a national multi-center study of different doses and schedules of low-dose oral cyclophosphamide in combination with a fixed dose of everolimus in patients with mRCC not amenable to or progressive after a VEGF-receptor tyrosine kinase inhibitor containing treatment regimen. In the phase I part of the study the optimal Treg-depleting dose and schedule of metronomic oral cyclophosphamide when given in combination with everolimus will be determined. In the phase II part of the study we will evaluate whether the percentage of patients progression free at 4 months of everolimus treatment can be increased from 50% to 70% by adding metronomic cyclophosphamide (in the dose and schedule determined in the phase I part). In addition to efficacy, we will perform extensive immune monitoring with a focus on the number, phenotype and function of Tregs, evaluate the safety and feasibility of the combination of everolimus and cyclophosphamide, perform monitoring of selected angiogenesis parameters and analyze everolimus and cyclophosphamide drug levels.</p> <p>Discussion</p> <p>This phase I-II study is designed to determine whether metronomic cyclophosphamide can be used to counter the mTOR inhibitor everolimus induced Treg expansion in patients with metastatic renal cell carcinoma and increase the antitumor efficacy of everolimus.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier <a href="http://www.clinicaltrials.gov/ct2/show/NCT01462214">NCT01462214</a>, EudraCT number 2010-024515-13, Netherlands Trial Register number <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2040">NTR3085</a>.</p

    Immunological effects of everolimus in patients with metastatic renal cell cancer

    No full text
    The mammalian target of rapamycin (mTOR) is a crucial kinase present in all cells. Besides its role in the regulation of cell-growth, proliferation, angiogenesis, and survival of malignant tumors, mTOR additionally plays an important role in immune regulation by controlling the balance between effector T cells and regulatory T cells (Tregs). This critically affects the suppressive state of the immune system. Here, the systemic immunological effects of everolimus treatment were comprehensively investigated in five patients with metastatic renal cell cancer. In this hypothesis generating study, the immunological alterations in circulating immune subsets induced by everolimus included a (non-significant) increase in the frequency of Tregs, a significant increase in monocytic myeloid-derived suppressor cells, a significant decrease in the frequency of immunoregulatory natural killer cells, classical CD141+ (cDC1) and CD1c+ (cDC2) dendritic cell subsets, as well as a decrease in the activation status of plasmacytoid dendritic cells and cDC1. These date indicate that the immunological effects of everolimus affect multiple immune cell subsets and altogether tip the balance in favor of immunosuppression, which can be considered a detrimental effect in the treatment of cancer, and may require combination treatment with agents able to negate immune suppression and boost T cell immunity

    Modulation of signaling enhances the efficacy of the combination of satraplatin and erlotinib

    No full text
    The active metabolite (JM118) of the oral platinum analog satraplatin (JM216) was investigated for potential synergism with erlotinib, an epidermal growth factor receptor (EGFR) inhibitor. JM118 sensitivity of 7 cancer cell lines (ovarian: 2008, A2780; colon: Lovo92, WiDr; lung: A549, SW1573; epidermoid: A431), was enhanced most pronounced when JM118 preceded erlotinib, which was associated with increased formation of DNA-platinum adducts. The combination increased G2/M phase accumulation and enhanced apoptosis. JM118 increased the phosphorylation of the cell cycle proteins CDK2 and CHK1 after 24 hr exposure. JM118/erlotinib enhanced Erk and Akt phosphorylation after 2 hr. JM118 significantly decreased the phosphorylation of PTEN, VEGFR, EPHA1, ERBB4, FGF-R, andSTAT3 by 20 (PTEN) to >90% (STAT3). Erlotinib enhanced the effects of JM118, even in cells with mutations in Ras. The mechanism of synergy involved a combination of effects on platinum-DNA adduct formation, cell cycle distribution and signalin

    Evaluation of a tyrosine kinase peptide microarray for tyrosine kinase inhibitor therapy selection in cancer

    No full text
    Personalized cancer medicine aims to accurately predict the response of individual patients to targeted therapies, including tyrosine kinase inhibitors (TKIs). Clinical implementation of this concept requires a robust selection tool. Here, using both cancer cell lines and tumor tissue from patients, we evaluated a high-throughput tyrosine kinase peptide substrate array to determine its readiness as a selection tool for TKI therapy. We found linearly increasing phosphorylation signal intensities of peptides representing kinase activity along the kinetic curve of the assay with 7.5-10 μg of lysate protein and up to 400 μM adenosine triphosphate (ATP). Basal kinase activity profiles were reproducible with intra- and inter-experiment coefficients of variation of <15% and <20%, respectively. Evaluation of 14 tumor cell lines and tissues showed similar consistently high phosphorylated peptides in their basal profiles. Incubation of four patient-derived tumor lysates with the TKIs dasatinib, sunitinib, sorafenib and erlotinib primarily caused inhibition of substrates that were highly phosphorylated in the basal profile analyses. Using recombinant Src and Axl kinase, relative substrate specificity was demonstrated for a subset of peptides, as their phosphorylation was reverted by co-incubation with a specific inhibitor. In conclusion, we demonstrated robust technical specifications of this high-throughput tyrosine kinase peptide microarray. These features required as little as 5-7 μg of protein per sample, facilitating clinical implementation as a TKI selection tool. However, currently available peptide substrates can benefit from an enhancement of the differential potential for complex samples such as tumor lysates. We propose that mass spectrometry-based phosphoproteomics may provide such an enhancement by identifying more discriminative peptides

    Phase 1 study of everolimus and low-dose oral cyclophosphamide in patients with metastatic renal cell carcinoma

    No full text
    Abstract: mTOR inhibitors are frequently used in the treatment of metastatic renal cell cancer (mRCC). mTOR regulates cell growth, proliferation, angiogenesis, and survival, and additionally plays an important role in immune regulation. Since mTOR inhibitors were shown to benefit immunosuppressive regulatory T-cell (Treg) expansion, this might suppress antitumor immune responses. Metronomic cyclophosphamide (CTX) was shown to selectively deplete Tregs. This study was, therefore, designed to determine the optimal dosage and schedule of CTX when combined with everolimus to prevent this potentially detrimental Treg expansion. In this national multi-center phase I study, patients with mRCC progressive on first line anti-angiogenic therapy received 10 mg everolimus once daily and were enrolled into cohorts with different CTX dosages and schedules. Besides immune monitoring, adverse events and survival data were monitored. 40 patients, 39 evaluable, were treated with different doses and schedules of CTX. Combined with 10 mg everolimus once daily, the optimal Treg depleting dose and schedule of CTX was 50 mg CTX once daily. 23 (59%) patients experienced one or more treatment-related ≥ grade 3 toxicity, mostly fatigue, laboratory abnormalities and pneumonitis. The majority of the patients achieved stable disease, two patients a partial response. Median PFS of all cohorts was 3.5 months. In conclusion, the optimal Treg depleting dose and schedule of CTX, when combined with everolimus, is 50 mg once daily. This combination leads to acceptable adverse events in comparison with everolimus alone. Currently, the here selected combination is being evaluated in a phase II clinical trial. Trial registration: NCT01462214

    Metronomic cyclophosphamide attenuates mTOR-mediated expansion of regulatory T cells, but does not impact clinical outcome in patients with metastatic renal cell cancer treated with everolimus

    No full text
    Introduction: Metastatic renal cell cancer (mRCC) patients have a median overall survival (mOS) of approximately 28 months. Until recently, mammalian target of rapamycin (mTOR) inhibition with everolimus was the standard second-line treatment regimen for mRCC patients, improving median progression-free survival (mPFS). Treatment with everolimus supports the expansion of immunosuppressive regulatory T cells (Tregs), which exert a negative effect on antitumor immune responses. In a phase 1 dose-escalation study, we have recently demonstrated that a low dose of 50 mg oral cyclophosphamide once daily can be safely combined with everolimus in mRCC patients and prevents the everolimus-induced increase in Tregs. Materials and methods: In a multicenter phase 2 study, performed in patients with mRCC not amenable to or progressive on a vascular endothelial growth factor (VEGF)-receptor tyrosine kinase inhibitor (TKI) containing treatment regimen, we assessed whether the addition of this metronomic dosing schedule of cyclophosphamide to therapy with everolimus could result in an improvement of progression-free survival (PFS) after 4 months of treatment. Results: Though results from this study confirmed that combination treatment effectively lowered circulating levels of Tregs, addition of cyclophosphamide did not improve the PFS rate at 4 months. For this reason, the study was abrogated at the predefined interim analysis. Conclusion: Although the comprehensive immunomonitoring analysis performed in this study provides relevant information for the design of future immunotherapeutic approaches, the addition of metronomic cyclophosphamide to mRCC patients receiving everolimus cannot be recommended

    Metronomic cyclophosphamide attenuates mTOR-mediated expansion of regulatory T cells, but does not impact clinical outcome in patients with metastatic renal cell cancer treated with everolimus

    Get PDF
    Introduction: Metastatic renal cell cancer (mRCC) patients have a median overall survival (mOS) of approximately 28 months. Until recently, mammalian target of rapamycin (mTOR) inhibition with everolimus was the standard second-line treatment regimen for mRCC patients, improving median progression-free survival (mPFS). Treatment with everolimus supports the expansion of immunosuppressive regulatory T cells (Tregs), which exert a negative effect on antitumor immune responses. In a phase 1 dose-escalation study, we have recently demonstrated that a low dose of 50 mg oral cyclophosphamide once daily can be safely combined with everolimus in mRCC patients and prevents the everolimus-induced increase in Tregs. Materials and methods: In a multicenter phase 2 study, performed in patients with mRCC not amenable to or progressive on a vascular endothelial growth factor (VEGF)-receptor tyrosine kinase inhibitor (TKI) containing treatment regimen, we assessed whether the addition of this metronomic dosing schedule of cyclophosphamide to therapy with everolimus could result in an improvement of progression-free survival (PFS) after 4 months of treatment. Results: Though results from this study confirmed that combination treatment effectively lowered circulating levels of Tregs, addition of cyclophosphamide did not improve the PFS rate at 4 months. For this reason, the study was abrogated at the predefined interim analysis. Conclusion: Although the comprehensive immunomonitoring analysis performed in this study provides relevant information for the design of future immunotherapeutic approaches, the addition of metronomic cyclophosphamide to mRCC patients receiving everolimus cannot be recommended
    corecore