25 research outputs found

    Rapidly rotating red giants

    Full text link
    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, which behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the identification of mode crossings is precise and efficient. The determination of the mean core rotation directly derives from the precise measurement of the asymptotic period spacing {\Delta}{\Pi}1 and of the frequency at which the crossing of the rotational components is observed.Comment: 4 pages, 2 figures, 2 tables, to be published in the Astro Fluid 2016 Conference Proceedings, editor EAS Publications Serie

    Measuring the core rotation of red giant stars

    Full text link
    Red giant stars present mixed modes, which behave as pressure modes in the convective envelope and as gravity modes in the radiative interior. This mixed character allows to probe the physical conditions in their core. With the advent of long-duration time series from space-borne missions such as CoRoT and Kepler, it becomes possible to study the red giant core rotation. As more than 15 000 red giant light curves have been recorded, it is crucial to develop a robust and efficient method to measure this rotation. Such measurements of thousands of mean core rotation would open the way to a deeper understanding of the physical mechanisms that are able to transport angular momentum from the core to the envelope in red giants. In this work, we detail the principle of the method we developed to obtain automatic measurements of the red giant mean core rotation. This method is based on the stretching of the oscillation spectra and on the use of the so-called Hough transform. We finally validate this method for stars on the red giant branch, where overlapping rotational splittings and mixed-mode spacings produce complicated frequency spectra.Comment: 8 pages, 3 figures, 1 tabl

    Mode Mixing and Rotational Splittings: II. Reconciling Different Approaches to Mode Coupling

    Full text link
    In the mixed-mode asteroseismology of subgiants and red giants, the coupling between the p- and g-mode cavities must be understood well in order to derive localised estimates of interior rotation from measurements of mode multiplet rotational splittings. There exist now two different descriptions of this coupling: one based on an asymptotic quantisation condition, and the other arising from coupling matrices associated with "acoustic molecular orbitals". We examine the analytic properties of both, and derive closed-form expressions for various quantities -- such as the period-stretching function τ\tau -- which previously had to be solved for numerically. Using these, we reconcile both formulations for the first time, deriving relations by which quantities in each formulation may be translated to and interpreted within the other. This yields an information criterion for whether a given configuration of mixed modes meaningfully constrains the parameters of the asymptotic construction, which is likely not satisfied by the majority of first-ascent red giant stars in our observational sample. Since this construction has been already used to make rotational measurements of such red giants, we examine -- through a hare-and-hounds exercise -- whether, and how, such limitations affect existing measurements. While averaged estimates of core rotation seem fairly robust, template-matching using the asymptotic construction has difficulty reliably assigning rotational splittings to individual multiplets, or estimating mixing fractions ζ\zeta of the most p-dominated mixed modes, where such estimates are most needed. We finally discuss implications for extending the two-zone model of radial differential rotation, e.g. via rotational inversions, with these methods.Comment: 23 pages, 13 figures. Accepted for publication in Ap

    Surface magnetism of rapidly rotating red giants: single versus close binary stars

    Full text link
    According to dynamo theory, stars with convective envelopes efficiently generate surface magnetic fields, which manifest as magnetic activity in the form of starspots, faculae, flares, when their rotation period is shorter than their convective turnover time. Most red giants, having undergone significant spin down while expanding, have slow rotation and no spots. However, based on a sample of about 4500 red giants observed by the NASA Kepler mission, a previous study showed that about 8 % display spots, including about 15 % that belong to close binary systems. Here, we shed light on a puzzling fact: for rotation periods less than 80 days, a red giant that belongs to a close binary system displays a photometric modulation about an order of magnitude larger than that of a single red giant with similar rotational period and physical properties. We investigate whether binarity leads to larger magnetic fields when tides lock systems, or if a different spot distribution on single versus close binary stars can explain this fact. For this, we measure the chromospheric emission in the CaII H & K lines of 3130 of the 4465 stars studied in a previous work thanks to the LAMOST survey. We show that red giants in a close-binary configuration with spin-orbit resonance display significantly larger chromospheric emission than single stars, suggesting that tidal locking leads to larger magnetic fields at a fixed rotational period. Beyond bringing interesting new observables to study the evolution of binary systems, this result could be used to distinguish single versus binary red giants in automatic pipelines based on machine learning.Comment: 10 pages, 8 Figures, accepted for publication in A&

    Critiques of digital tools in agriculture: Challenges & opportunities for using digital tools to scale agroecology by smallholders

    Get PDF
    KEY MESSAGES ◼ Two themes manifest in the challenges outlined, unequal power relations and a disconnect from farmers’ needs and input. ◼ Agricultural digitization should strive to follow ethical principles specific to the sector, agroecology offers an existing framework. ◼ Digital technical assistance that advances the interests of smallholders and is relevant to their farms can facilitate a shift towards agroecology through farmer-to-farmer networks and knowledge exchange. ◼ Recommendations include: ▪ Govern for an inclusive digital ecosystem & economy ▪ Leverage and expand food, data & social justice movements ▪ Code ethics into digital developmen

    Specialist palliative and end-of-life care for patients with cancer and SARS-CoV-2 infection: a European perspective

    Get PDF
    COVID-19; Cancer; End-of life care (EOLC)COVID-19; Cáncer; Cuidados al final de la vidaCOVID-19; Càncer; Cures al final de la vidaBackground: Specialist palliative care team (SPCT) involvement has been shown to improve symptom control and end-of-life care for patients with cancer, but little is known as to how these have been impacted by the COVID-19 pandemic. Here, we report SPCT involvement during the first wave of the pandemic and compare outcomes for patients with cancer who received and did not receive SPCT input from multiple European cancer centres. Methods: From the OnCovid repository (N = 1318), we analysed cancer patients aged ⩾18 diagnosed with COVID-19 between 26 February and 22 June 2020 who had complete specialist palliative care team data (SPCT+ referred; SPCT− not referred). Results: Of 555 eligible patients, 317 were male (57.1%), with a median age of 70 years (IQR 20). At COVID-19 diagnosis, 44.7% were on anti-cancer therapy and 53.3% had ⩾1 co-morbidity. Two hundred and six patients received SPCT input for symptom control (80.1%), psychological support (54.4%) and/or advance care planning (51%). SPCT+ patients had more ‘Do not attempt cardio-pulmonary resuscitation’ orders completed prior to (12.6% versus 3.7%) and during admission (50% versus 22.1%, p < 0.001), with more SPCT+ patients deemed suitable for treatment escalation (50% versus 22.1%, p < 0.001). SPCT involvement was associated with higher discharge rates from hospital for end-of-life care (9.7% versus 0%, p < 0.001). End-of-life anticipatory prescribing was higher in SPCT+ patients, with opioids (96.3% versus 47.1%) and benzodiazepines (82.9% versus 41.2%) being used frequently for symptom control. Conclusion: SPCT referral facilitated symptom control, emergency care and discharge planning, as well as high rates of referral for psychological support than previously reported. Our study highlighted the critical need of SPCTs for patients with cancer during the pandemic and should inform service planning for this population.The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Wellcome Trust Strategic Fund [PS3416] awarded to DJP and by direct project funding from the NIHR Imperial Biomedical Research Centre (BRC) awarded to DJP. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. OnCovid was supported in part by funds from the Cancer Treatment and Research Trust (CTRT) awarded to DJP and from the Associazione Italiana per la Ricerca sul Cancro Foundation [14230] awarded to AG

    Spinning up the Surface: Evidence for Planetary Engulfment or Unexpected Angular Momentum Transport?

    Full text link
    In this paper, we report the potential detection of a nonmonotonic radial rotation profile in a low-mass lower-luminosity giant star. For most low- and intermediate-mass stars, the rotation on the main sequence seems to be close to rigid. As these stars evolve into giants, the core contracts and the envelope expands, which should suggest a radial rotation profile with a fast core and a slower envelope and surface. KIC 9267654, however, seems to show a surface rotation rate that is faster than its bulk envelope rotation rate, in conflict with this simple angular momentum conservation argument. We improve the spectroscopic surface constraint, show that the pulsation frequencies are consistent with the previously published core and envelope rotation rates, and demonstrate that the star does not show strong chemical peculiarities. We discuss the evidence against any tidally interacting stellar companion. Finally, we discuss the possible origin of this unusual rotation profile, including the potential ingestion of a giant planet or unusual angular momentum transport by tidal inertial waves triggered by a close substellar companion, and encourage further observational and theoretical efforts.Comment: 18 pages, 9 figures, submitted to AAS Journal

    Mortality Among Adults With Cancer Undergoing Chemotherapy or Immunotherapy and Infected With COVID-19

    Get PDF
    Importance: Large cohorts of patients with active cancers and COVID-19 infection are needed to provide evidence of the association of recent cancer treatment and cancer type with COVID-19 mortality. // Objective: To evaluate whether systemic anticancer treatments (SACTs), tumor subtypes, patient demographic characteristics (age and sex), and comorbidities are associated with COVID-19 mortality. // Design, Setting, and Participants: The UK Coronavirus Cancer Monitoring Project (UKCCMP) is a prospective cohort study conducted at 69 UK cancer hospitals among adult patients (≥18 years) with an active cancer and a clinical diagnosis of COVID-19. Patients registered from March 18 to August 1, 2020, were included in this analysis. // Exposures: SACT, tumor subtype, patient demographic characteristics (eg, age, sex, body mass index, race and ethnicity, smoking history), and comorbidities were investigated. // Main Outcomes and Measures: The primary end point was all-cause mortality within the primary hospitalization. // Results: Overall, 2515 of 2786 patients registered during the study period were included; 1464 (58%) were men; and the median (IQR) age was 72 (62-80) years. The mortality rate was 38% (966 patients). The data suggest an association between higher mortality in patients with hematological malignant neoplasms irrespective of recent SACT, particularly in those with acute leukemias or myelodysplastic syndrome (OR, 2.16; 95% CI, 1.30-3.60) and myeloma or plasmacytoma (OR, 1.53; 95% CI, 1.04-2.26). Lung cancer was also significantly associated with higher COVID-19–related mortality (OR, 1.58; 95% CI, 1.11-2.25). No association between higher mortality and receiving chemotherapy in the 4 weeks before COVID-19 diagnosis was observed after correcting for the crucial confounders of age, sex, and comorbidities. An association between lower mortality and receiving immunotherapy in the 4 weeks before COVID-19 diagnosis was observed (immunotherapy vs no cancer therapy: OR, 0.52; 95% CI, 0.31-0.86). // Conclusions and Relevance: The findings of this study of patients with active cancer suggest that recent SACT is not associated with inferior outcomes from COVID-19 infection. This has relevance for the care of patients with cancer requiring treatment, particularly in countries experiencing an increase in COVID-19 case numbers. Important differences in outcomes among patients with hematological and lung cancers were observed

    Evolution of the core rotation of red giant branch stars : from large-scale measurements towards a characterisation of the angular momentum transport

    No full text
    L’astérosismologie consiste à sonder les intérieurs stellaires en détectant les ondes sismiques qui s’y propagent. Les géantes rouges, des étoiles évoluées peu massives dont l’hydrogène du cœur est épuisé, sont des pulsateurs de type solaire présentant des modes mixtes qui nous permettent d’accéder directement aux propriétés physiques de leur cœur. Les mesures sismiques disponibles indiquent qu’un ou plusieurs mécanismes physiques encore mal compris contrebalancent l’accélération de la rotation du cœur sous l’effet de sa contraction, en transportant du moment cinétique. La majeure partie de cette thèse a été consacrée au développement d’une méthode permettant une mesure aussi automatisée que possible de la rotation moyenne du cœur des étoiles de la branche des géantes rouges observées par le satellite Kepler (NASA). Les mesures obtenues pour environ 900 étoiles mettent en évidence que la rotation du cœur est à peu près constante le long de la branche des géantes rouges,avec des valeurs indépendantes de la masse des étoiles. Le deuxième volet de cette thèse est consacré à l’interprétation de ces résultats basée sur la modélisation stellaire. L’enjeu consiste à utiliser les mesures à grande échelle obtenues durant la première partie pour caractériser la quantité de moment cinétique qui doit être extraite localement de chaque région du cœur, à différents instants sur la branche des géantes rouges, pour différentes masses stellaires.Asteroseismology consists in probing stellar interiors through the detection of seismic waves. Red giants are evolved low-mass stars that have exhausted hydrogen in their core. These stars are solar-type pulsators presenting mixed modes that allow us to have a direct access to the physical properties of their core. The available seismic measurements indicate that one or several mechanisms that remain poorly understood counterbalance the acceleration ofthe core rotation, resulting from its contraction, by transporting angularmomentum. The greatest part of this PhD thesis was devoted to the development of a method allowing a measurement as automated as possible of the mean core rotation of stars on the red giant branch that were observed by the Kepler satellite (NASA). The measurements that were derived for almost 900 stars highlight that the core rotation is almost constant along the red giant branch, with values largely independent of the stellar mass. The second part of this PhD thesis is devoted to the interpretation of these results based on stellar modelling. The challenge consists in using the large-scale measurements obtainedin the first part to characterise the quantity of angular momentum that has to be extracted from each layer of the core, at different timesteps on the red giant branch, for different stellar masses
    corecore