21 research outputs found

    The case for the continued use of the genus name Mimulus for all monkeyflowers

    Get PDF
    The genus Mimulus is a well-studied group of plant species, which has for decades allowed researchers to address a wide array of fundamental questions in biology (Wu & al. 2008; Twyford & al. 2015). Linnaeus named the type species of Mimulus (ringens L.), while Darwin (1876) used Mimulus (luteus L.) to answer key research questions. The incredible phenotypic diversity of this group has made it the focus of ecological and evolutionary study since the mid-20th century, initiated by the influential work of Clausen, Keck, and Hiesey as well as their students and collaborators (Clausen & Hiesey 1958; Hiesey & al. 1971, Vickery 1952, 1978). Research has continued on this group of diverse taxa throughout the 20th and into the 21st century (Bradshaw & al. 1995; Schemske & Bradshaw 1999; Wu & al. 2008; Twyford & al. 2015; Yuan 2019), and Mimulus guttatus was one of the first non-model plants to be selected for full genome sequencing (Hellsten & al. 2013). Mimulus has played a key role in advancing our general understanding of the evolution of pollinator shifts (Bradshaw & Schemske 2003; Cooley & al. 2011; Byers & al. 2014), adaptation (Lowry & Willis 2010; Kooyers & al. 2015; Peterson & al. 2016; Ferris & Willis 2018; Troth & al. 2018), speciation (Ramsey & al. 2003; Wright & al. 2013; Sobel & Streisfeld 2015; Zuellig & Sweigart 2018), meiotic drive (Fishman & Saunders 2008), polyploidy (Vallejo-Marín 2012; Vallejo-Marín & al. 2015), range limits (Angert 2009; Sexton et al. 2011; Grossenbacher & al. 2014; Sheth & Angert 2014), circadian rhythms (Greenham & al. 2017), genetic recombination (Hellsten & al. 2013), mating systems (Fenster & Ritland 1994; Dudash & Carr 1998; Brandvain & al. 2014) and developmental biology (Moody & al. 1999; Baker & al. 2011, 2012; Yuan 2019). This combination of a rich history of study coupled with sustained modern research activity is unparalleled among angiosperms. Across many interested parties, the name Mimulus therefore takes on tremendous biological significance and is recognizable not only by botanists, but also by zoologists, horticulturalists, naturalists, and members of the biomedical community. Names associated with a taxonomic group of this prominence should have substantial inertia, and disruptive name changes should be avoided. As members of the Mimulus community, we advocate retaining the genus name Mimulus to describe all monkeyflowers. This is despite recent nomenclature changes that have led to a renaming of most monkeyflower species to other genera.Additional co-authors: Jannice Friedman, Dena L Grossenbacher, Liza M Holeski, Christopher T Ivey, Kathleen M Kay, Vanessa A Koelling, Nicholas J Kooyers, Courtney J Murren, Christopher D Muir, Thomas C Nelson, Megan L Peterson, Joshua R Puzey, Michael C Rotter, Jeffrey R Seemann, Jason P Sexton, Seema N Sheth, Matthew A Streisfeld, Andrea L Sweigart, Alex D Twyford, John H Willis, Kevin M Wright, Carrie A Wu, Yao-Wu Yua

    Ebola: translational science considerations

    Get PDF
    We are currently in the midst of the most aggressive and fulminating outbreak of Ebola-related disease, commonly referred to as “Ebola”, ever recorded. In less than a year, the Ebola virus (EBOV, Zaire ebolavirus species) has infected over 10,000 people, indiscriminately of gender or age, with a fatality rate of about 50%. Whereas at its onset this Ebola outbreak was limited to three countries in West Africa (Guinea, where it was first reported in late March 2014, Liberia, where it has been most rampant in its capital city, Monrovia and other metropolitan cities, and Sierra Leone), cases were later reported in Nigeria, Mali and Senegal, as well as in Western Europe (i.e., Madrid, Spain) and the US (i.e., Dallas, Texas; New York City) by late October 2014. World and US health agencies declared that the current Ebola virus disease (EVD) outbreak has a strong likelihood of growing exponentially across the world before an effective vaccine, treatment or cure can be developed, tested, validated and distributed widely. In the meantime, the spread of the disease may rapidly evolve from an epidemics to a full-blown pandemic. The scientific and healthcare communities actively research and define an emerging kaleidoscope of knowledge about critical translational research parameters, including the virology of EBOV, the molecular biomarkers of the pathological manifestations of EVD, putative central nervous system involvement in EVD, and the cellular immune surveillance to EBOV, patient-centered anthropological and societal parameters of EVD, as well as translational effectiveness about novel putative patient-targeted vaccine and pharmaceutical interventions, which hold strong promise, if not hope, to curb this and future Ebola outbreaks. This work reviews and discusses the principal known facts about EBOV and EVD, and certain among the most interesting ongoing or future avenues of research in the field, including vaccination programs for the wild animal vectors of the virus and the disease from global translational science perspective

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    High Spontaneous Mutation Frequency in Shuttle Vector Sequences Recovered from Mammalian Cellular DNA Downloaded from

    No full text
    The recombinant shuttle vector pSV2gpt was introduced into V79 Chinese hamster cells, and stable transformants expressing the Escherichia coli gpt gene were selected. Two transformants carrying tandem duplications of the plasmid at a single site were identified and fused to simian COS-1 cells. Plasmid DNA recovered from the heterokaryons was used to transform a Gpt-derivative of E. coli HB101, and the relative frequency of plasmids carrying a mutation in the gpt gene was determined. The high frequency of Gptplasmids (ca. 1%) was similar to that observed when plasmid was recovered from COS-1 cells which had been transfected with pSV2gpt. Most of the mutant plasmids had rearrangements in the region containing the gpt gene. Experimental systems utilizing the Escherichia coli lacI gene and the bacteriophage lambda cI gene have generated a great deal of information concerning both the base specificity and site specificity of mutagens in E. coli In an attempt to develop such a system, we have transformed a V79 Chinese hamster cell line with the SV40-based shuttle vector pSV2gpt Preparation of cellular DNA and blot analysis. Cells grown in HAT medium were harvested from two 150-mm culture dishes, and high-molecular-weight DNA was prepared by the method of Blin and Stafford (2). DNA (5 ,ug) from each sample was digested to completion with restriction enzymes according to the recommendation of the manufacturer (New England Biolabs). The digested DNAs were electrophoresed through a 0.7% agarose gel along with lambda Hindlll markers. The gel was then stained with ethidium bromide and visualized under UV light before denaturation, neutralization, and transfer to nitrocellulose (21). 32P-labeled pSV2gpt DNA was prepared by nick translation to a specific activity of 3 x 108 cpm/,ug of DNA. Approximately 1 x 107 to 5 x 107 cpm of this probe was added to a filter which had been prehybridized for 24 h at 65°C in 6x SSC (lx SSC, 0.15 M NaCl plus 0.015 M sodium citrate)-5 x Denhardt solution-100 .g of sheared and denatured salmon sperm DNA per ml. The filter was hybridized overnight at 65°C in the above prehybridization solution, followed by three 1-h washes at 650C in 2 x SSC-0. 1% sodium dodecyl sulfate and a single 15-min wash in 0.1x SSC-0. 1% sodiutn dodecyl sulfate. Th
    corecore