208 research outputs found

    Pathophysiologic role of Interleukin-33/ST2 in Sjögren's syndrome

    Get PDF
    Interleukin-33 (IL-33) is a member of the IL-1 family and has dual functions as a nuclear factor as well as a cytokine. The pivotal role of IL-33 as an active player contributing to aberrant local and systemic damage has been highlighted in several inflammatory and autoimmune diseases. Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by dry eyes and mouth syndrome due to local dysfunctions of exocrine glands, but also accompanied with systemic manifestations. The pathophysiology of pSS has been advocated as a conjecture of activated B and T cells as well as the production of inflammatory cytokines and autoantibodies, driving epithelial tissue damage and disease progression. In pSS, IL-33 is released in the extracellular space from damaged salivary cells upon pro-inflammatory stimuli and/or dysfunction of epithelial barrier. Counter-regulatory mechanisms are initiated to limit the pro-inflammatory actions of IL-33 as portrayed by an increase in the decoy receptor for IL-33, the soluble form of ST2 (sST2). In pSS and associated diseases, the levels of IL-33 are significantly elevated in the serum or tears of patients. Mechanistically, IL-33 acts in synergy with IL-12 and IL-23 on NK and NKT cells to boost the production of IFN-γ contributing to inflammation. TNF-α, IL-1β and IFN-γ in turn further increase the activation of IL-33/ST2 pathway, thereby constituting a vicious inflammatory loop leading to disease exacerbation. IL-33/ST2 axis is involved in Sjögren's syndrome and opens new perspectives as therapeutic target of one of the culprits in the inflammatory perpetuation.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Thalamic Neuron Resilience during Osmotic Demyelination Syndrome (ODS) Is Revealed by Primary Cilium Outgrowth and ADP-ribosylation factor-like protein 13B Labeling in Axon Initial Segment

    Get PDF
    A murine osmotic demyelinating syndrome (ODS) model was developed through chronic hyponatremia, induced by desmopressin subcutaneous implants, followed by precipitous sodium restoration. The thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) relay nuclei were the most demyelinated regions where neuroglial damage could be evidenced without immune response. This report showed that following chronic hyponatremia, 12 h and 48 h time lapses after rebalancing osmolarity, amid the ODS-degraded outskirts, some resilient neuronal cell bodies built up primary cilium and axon hillock regions that extended into axon initial segments (AIS) where ADP-ribosylation factor-like protein 13B (ARL13B)-immunolabeled rod-like shape content was revealed. These AIS-labeled shaft lengths appeared proportional with the distance of neuronal cell bodies away from the ODS damaged epicenter and time lapses after correction of hyponatremia. Fine structure examination verified these neuron abundant transcriptions and translation regions marked by the ARL13B labeling associated with cell neurotubules and their complex cytoskeletal macromolecular architecture. This necessitated energetic transport to organize and restore those AIS away from the damaged ODS core demyelinated zone in the murine model. These labeled structures could substantiate how thalamic neuron resilience occurred as possible steps of a healing course out of ODS.</p

    The osmotic demyelination syndrome:the resilience of thalamic neurons is verified with transmission electron microscopy

    Get PDF
    The development of a murine model of osmotic demyelinating syndrome (ODS) allowed to study changes incurred in extrapontine zones of the CNS and featured neuron and glial cell changes in the relay thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) nuclei before, during and after ODS induction, and characterized without immune response. There, the neuron Wallerian-type deteriorations were verified with fine structure modifications of the neuron cell body, including some nucleus topology and its nucleolus changes. Morphologic analyses showed a transient stoppage of transcriptional activities while myelinated axons in the surrounding neuropil incurred diverse damages, previously reported. Even though the regional thalamus myelin deterioration was clearly recognized with light microscopy 248 h after osmotic recovery of ODS, ultrastructure analyses demonstrated that, at that time, the same damaged parenchyma regions contained nerve cell bodies that have already reactivated nucleus transcriptions and neuroplasm translations because peculiar accumulations of fibro-granular materials, similar to those detected in restored ODS astrocytes, were revealed in these restructuring nerve cell bodies. Their aspects suggested to be accumulations of ribonucleoproteins. The findings suggested that progressive neural function's recovery in the murine model could imitate some aspects of human ODS recovery cases.info:eu-repo/semantics/publishe

    Early phrenic motor neuron loss and transient respiratory abnormalities following unilateral cervical spinal cord contusion

    Get PDF
    Contusion-type cervical spinal cord injury (SCI) is one of the most common forms of SCI observed in patients. In particular, injuries targeting the C3-C5 region affect the pool of phrenic motor neurons (PhMNs) that innervates the diaphragm, resulting in significant and often chronic respiratory dysfunction. Using a previously described rat model of unilateral midcervical C4 contusion with the Infinite Horizon Impactor, we have characterized the early time course of PhMN degeneration and consequent respiratory deficits following injury, as this knowledge is important for designing relevant treatment strategies targeting protection and plasticity of PhMN circuitry. PhMN loss (48% of the ipsilateral pool) occurred almost entirely during the first 24 h post-injury, resulting in persistent phrenic nerve axonal degeneration and denervation at the diaphragm neuromuscular junction (NMJ). Reduced diaphragm compound muscle action potential amplitudes following phrenic nerve stimulation were observed as early as the first day post-injury (30% of pre-injury maximum amplitude), with slow functional improvement over time that was associated with partial reinnervation at the diaphragm NMJ. Consistent with ipsilateral diaphragmatic compromise, the injury resulted in rapid, yet only transient, changes in overall ventilatory parameters measured via whole-body plethysmography, including increased respiratory rate, decreased tidal volume, and decreased peak inspiratory flow. Despite significant ipsilateral PhMN loss, the respiratory system has the capacity to quickly compensate for partially impaired hemidiaphragm function, suggesting that C4 hemicontusion in rats is a model of SCI that manifests subacute respiratory abnormalities. Collectively, these findings demonstrate significant and persistent diaphragm compromise in a clinically relevant model of midcervical contusion SCI; however, the therapeutic window for PhMN protection is restricted to early time points post-injury. On the contrary, preventing loss of innervation by PhMNs and/or inducing plasticity in spared PhMN axons at the diaphragm NMJ are relevant long-term targets

    Lipoteichoic acid stimulates the proliferation, migration and cytokine production of adult dental pulp stem cells without affecting osteogenic differentiation

    Get PDF
    Aim: To model in vitro the contact between adult dental pulp stem cells (DPSCs) and lipoteichoic acid (LTA), a cell wall component expressed at the surface of most Gram-positive bacteria. Methodology: Human DPSCs obtained from impacted third molars were cultured and exposed to various concentrations of S. aureus LTA (0.1, 1.0 and 10 µg mL −1). The effects of LTA on DPSCs proliferation and apoptosis were investigated by MTT assay and flow cytometry. Mineralization of DPSCs was evaluated by alizarin red staining assay. Migration was investigated by microphotographs of wound-healing and Transwell migration assays. Reverse transcription polymerase chain reaction was used to examine the effects of LTA on p65 NF-κB translocation and TLR1, TLR2 or TLR6 regulation. Enzyme-linked immunosorbent assay was used to investigate LTA-stimulated DPSCs cytokine production. One-way or two-way ANOVA and Tukey post hoc multiple comparison were used for statistical analysis. Results: DPSCs expressed TLR1, TLR2 and TLR6 involved in the recognition of various forms of LTA or lipoproteins. Exposure to LTA did not up- or down-regulate the mRNAs of TLR1, TLR2 or TLR6 whilst LPS acted as a potent inducer of them [TLR1 (P ≤ 0.05), TLR2 (P ≤ 0.001) and TLR6 (P ≤ 0.001)]. Translocation of p65 NF-κB to the nucleus was detected in LTA-stimulated cells, but to a lesser extent than LPS-stimulated DPSCs (P ≤ 0.001). The viability of cells exposed to LTA was greater than unstimulated cells, which was attributed to an increased proliferation and not to less cell death [LTA 1 μg mL −1 (P ≤ 0.001) and 10 μg mL −1 (P ≤ 0.01)]. For specific doses of LTA (1.0 µg mL −1), adhesion of DPSCs to collagen matrix was disturbed (P ≤ 0.05) and cells enhanced their horizontal mobility (P ≤ 0.001). LTA-stimulated DPSCs released IL-6 and IL-8 in a dose-dependent manner (P ≤ 0.0001). At all concentrations investigated, LTA did not influence osteogenic/odontoblastic differentiation. Conclusions: Human DPSCs were able to sense the wall components of Gram-positive bacteria likely through TLR2 signalling. Consequently, cells modestly proliferated, increased their migratory behaviour and contributed significantly to the local inflammatory response through cytokine release. </p
    • …
    corecore