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Abstract
Young male Zucker rats with a leptin receptor mutation are obese, have a non-insulin-dependent diabetes mellitus (NIDDM), and other endocrinopathies. Fine 
structure aspects of the tibial branches of the sciatic nerve of lean (Fa/?) and obese (fa/fa) perfused rats were compared and revealed a progressive demyelination caused 
by Schwann cells (SCs). There, stacked myelin layers membranes and other adhering junctions were defective in many nerve fibers of the obese rats, including of the 
mesaxons of the smallest fibers. Additionally, the progressive myelin alterations caused by metabolomic alterations in membrane components sorted by the SCs may 
also have revealed a peculiar, centripetal mode of sorting and trafficking maintenance of the peripheral nerve myelin. 
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Introduction
Demyelination could be acute or chronic. However, the etiology of 

the degenerative process related to the nourishing layer of nerve fibers, 
either can involve the central [CNS] [1-3] or the peripheral nervous 
system [PNS] [2,4-6]. It is still poorly understood, especially in the case 
of diabetes [7]. In textbooks, PNS neuropathies, are topics brought 
along with neuromuscular anomalies [8] and the defects are classified 
either as (a) axonal neuropathies in which insults often consist in 
degeneration occurring distally and secondarily to damage to the myelin 
or (b) as demyelinating neuropathies characterized by Schwann cell 
(SC) alterations in which myelin would support abnormal conduction 
velocities. This latter type of insidious neural defect is apparently short-
sized and can appear randomly to reduce the internode myelin sheaths 
while maintaining the axonal content. Changes occurring in the PNS 
endoneurium have been seldom investigated, contrarily of what is 
noted for the CNS [9-11]. Recent advances also call about cooperativity 
between SC basal lamina components and axon revealing paracrine 
and juxtacrine interactions with at least one of the neuregulins [12,13]. 

Diabetes is known since Antiquity [7,14] but the enormous 
literature dealing with myelin [15] and diabetes defects is mainly 
clinical and metabolic, If it does share ultrastructural aspects there 
are many controversies in the structure and diagnostic progress of the 
nerve defects because human myelin samples are illustrated without 
pinpointing to any or how some myelin component(s) that is (are) 
implicated in defects [16-24]. Recently, in a murine model, similar 
questioning occurred [25]. More precision in this NIDDM defect about 
the causing flaw and mechanism would solve what becomes a huge public 
health concern where the Zucker rat has been introduced [26,27].

This short report complements previous data on PNS myelin 
fibers of the obese Zucker rat with NIDDM, where it is known the 

leptin receptor mutation is causing diabetes, in an equivalent way of 
human pathology [28]. Even though, this myelinopathy associates 
with co-existing endocrinopathies, it demonstrates the SC’s metabolic 
maintenance and turnover of the myelin is important and one has 
tried to realize, through collection of micrographs, a sort of dynamic, 
sequential events of the damage throughout the myelin layers. More 
specifically, in continuity with a previous collection of data [29], this 
report further illustrates the smallest myelin anomalies of tiny nerve 
fibers along with other examples of adjacent large size damages found 
throughout some of the axon’s walls. Astonishingly, our ultrastructural 
findings on demyelination damages could also claim that one may have 
also unravelled a peculiar centripetal mode of myelin maintenance 
by SCs in PNS nerves which can be added to another found in CNS, 
likely originating from nodal zone, that is longitudinal, alongside its 
membrane’s extensions [30-32]. 

Materials and methods
The Institutional Animal Care and Use Committee of the 

Northeastern Ohio Universities College of Medicine (now Northeast 
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The few micrographs exemplified here are added to the defects 
described in previous publications and again reveal that SCs, with 
their continuous maintenance of the myelin, most of the burden of 
metabolic changes causing this defective myelin [36-41]. The SCs are 
imposed complex endocrine influences through which expression 
and sorting of some components of the myelin can be altered [29,35]. 
Besides the phospholipids that seemed to organize in orderly way 
layers, the obese Zucker peripheral nerves showed disorders similar 
to those of the CNS missing a plasmalogen such as the myelin basic 
protein in the CNS [42]. Of course, in the PNS, such as in this case, 
any plasmalogen (i.e. P0 or peripheral myelin protein 22), ceramide, 
cadherin and periaxin along with connexin 32 that contribute to the 
architecture and adherence of the neuroplasm, could be involved 
[43-51]. The altered protective insulation and nerve conduction 
integrity could change by wrong SC expression and sorting of 
membrane components in the PNS [36,41,52-60] through direct or 
indirect endocrine influence. In these obese rat models like in some 
diabetic humans, leptin plethora without receptor severs the normal 
hypothalamo-pituitary (and pineal?) axis functions (thyroid, growth 
hormone, gonadotroph and corticotroph signalling defects, circadian 
rhythms, etc.). There, knock out mice models would provide further 
information as to whether some components sorting can influence 
the dysmyelination associated with NIDDM peripheral nerves. Out of 
human diabetes autopsies and other animal diabetes data, analyses of 
nerves from limb amputations [61,62] where cholesterol-phospholipid 
balance have been altered [36,44,63-71]. Others have investigated 
the endoplasmic reticulum and other plasmalogens and glycolipids, 
especially P0 protein [72-78]. Thus, the observations support that in 
obese Zucker rat nerves, similarly to other animal models and, possibly 
the human, translates as well into congenital obesity [79-82]. Out of 
this non-inflammatory PNS demyelination, one can again bring the 
hypothesis that associated proteins and proteoglycans to the myelin 
[83], not only can turn over rafts [84-86] similarly as in CNS along 
the Schmidt-Lantermann incisures toward internode membranes 
[31,32] with a sort of domino effect replacement with renewed adhesive 
trans membrane components sorting across an already poorly zipped 
membranes [73]. In our case, wrong accumulations or sorting of myelin 
components by SCs were also viewed as flawed by insulin disruption 
[60] including the tiny forming mesaxons as an initial and associated 
disorder in the architecture alignments of the normal wrapping 
without being caused by osmotic processing when compared with 
normal nerves [29,87] and, this throughout along the changed NIDDM 
myelin, having components with a centripetal insertion, viewed by 
the evidenced growing blemishes making sorts of trans membranous 

Ohio University), Rootstown, Ohio, USA have approved the procedures 
of animal care, anaesthesia, euthanasia, and tissue’s collection of this 
study and concomitant ones [29,33-35]. The collection of tissues of 
lean and obese Zucker young male rats have been described in detail 
in a recent publication, with free access [29]. These obese Zucker rats 
seemed to be with non-insulin dependent diabetes (NIDDM) which 
affliction becomes the most common and is increasing rapidly in many 
populations.

Results
In the previous publication, comparisons were made between light 

microscopy (1-µm thick epoxy sections, stained in toluidine blue) to 
select fields of investigations, and with those in ultrastructure of the 
myelin covering the nerve fibers of the sciatic tibial nerve branches 
[29,34]. Here, a small nerve fibre illustrated in Figure 1A of a normal 
rat is compared with that of an obese, i.e. diabetic one in Figure 1B. 
Noting the initial zone of myelin formation of the sciatic nerve branch 
with a SC makes an outer mesaxon with blemishes. Not only parts 
of the adaxonal membrane is disorganized instead of a distinct inner 
mesaxon structure but defects also occurred at the level of the outer 
mesaxon construction. Instead, a mush of membrane fragments 
appeared amongst a space occupied by a wrap vacuolated of waxy 
deposits in the diabetic nerve fibre (Figure 1B). 

In the large nerve fibers of the lean rat, typical nerve myelin 
displayed no blemishes and a clear inner adaxonal membrane (Figure 
2A) while the defects viewed in obese Zucker NIDDM rats (Figure 
2B-C) not only encompassed the similar inner myelin parts but also 
the concentric layers of myelin membranes that showed traversed 
by ‘funnels’ initiated in the SC’s Cajal zone, progressing as narrow 
to enlarged and intermembranous rifts of the outer to inner myelin 
layer, enlarging toward the adaxonal layer, thus in a centripetal 
diffusion pattern (Figure 2B-C). These blemishes could be caused by 
trans membranous defect of macromolecules involved in adherence of 
myelin membranes, either as extracted or missing from SC’s sorting. 

Discussion
Processing the obese nerve samples may either have extracted 

peculiar components located in the spaces between myelin layers or, 
more likely, these gaps filled with vacuoles and gunky sludge were 
already made by the NIDDM because the control and obese Zucker rat 
nerves were fixed a short time after perfusion fixation and processed 
simultaneously and in the same methodology. 

Figure 1 A-B. Small nerve fibers of lean (A) and obese (B) Zucker rat. In B: flaws in 
initial myelin formation of the outer mesaxon (arrows). There, the SC’s Cajal band contains 
a space with a complex waxy deposit and the adaxonal membrane displaced develops a 
vacuolated space (*). Both damages accompany remains of membranes as shown in insert 
obtained out of another section of the same nerve fibre. Scales are 500 nm in A and b, insert 
ib B is 200 nm

Figure 2 A-C: Parts of cross sections of large diameter myelinated nerve fibers of a lean 
(A) and obese (B and C) Zucker rats where the adaxonal membranes are marked by an 
arrow in A-C. In A: the lean rat myelin displays a regular, typical myelin wrapping. In B: 
channel-like damages across the myelin with C illustrating some of the complex initial wide 
funnel-like pockets of demyelination noted in some nerve fibers, damages appearing as 
wrinkled membranes initiated in the Cajal band. Scales are all equal to 500 nm
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passageways across the sort of liquid crystal-like phase between myelin 
strata could be created by a sort of Rayleigh-Taylor instability [88,89]. 
In this case, at first, accumulated molecular species passing throughs, 
appear by accumulations as a processing channel-like, with centripetal 
orientation, widen into sectors caused by the progressively changed 
myelin composition. 
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