589 research outputs found

    New Methods in Tissue Engineering: Improved Models for Viral Infection

    Get PDF
    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo–like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions.Hertz Foundation (Fellowship)National Science Foundation (U.S.). Graduate Research FellowshipNational Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant DK085713)Skolkovo Institute of Science and Technology (Grant 022423-003

    Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems

    Get PDF
    Hepatitis B virus (HBV) chronically infects 400 million people worldwide and is a leading driver of end-stage liver disease and liver cancer. Research into the biology and treatment of HBV requires an in vitro cell-culture system that supports the infection of human hepatocytes, and accurately recapitulates virus–host interactions. Here, we report that micropatterned cocultures of primary human hepatocytes with stromal cells (MPCCs) reliably support productive HBV infection, and infection can be enhanced by blocking elements of the hepatocyte innate immune response associated with the induction of IFN-stimulated genes. MPCCs maintain prolonged, productive infection and represent a facile platform for studying virus–host interactions and for developing antiviral interventions. Hepatocytes obtained from different human donors vary dramatically in their permissiveness to HBV infection, suggesting that factors—such as divergence in genetic susceptibility to infection—may influence infection in vitro. To establish a complementary, renewable system on an isogenic background in which candidate genetics can be interrogated, we show that inducible pluripotent stem cells differentiated into hepatocyte-like cells (iHeps) support HBV infection that can also be enhanced by blocking interferon-stimulated gene induction. Notably, the emergence of the capacity to support HBV transcriptional activity and initial permissiveness for infection are marked by distinct stages of iHep differentiation, suggesting that infection of iHeps can be used both to study HBV, and conversely to assess the degree of iHep differentiation. Our work demonstrates the utility of these infectious systems for studying HBV biology and the virus’ interactions with host hepatocyte genetics and physiology.Skolkovo Institute of Science and Technology (Grant 022423-003)National Institutes of Health (U.S.) (Grant UH2 EB017103)National Institutes of Health (U.S.) (Grant DK085713)National Cancer Institute (U.S.) (Koch Institute Support. Grant P30-CA14051)American Gastroenterological Association (Research Scholar Award)National Institutes of Health (U.S.) (Grant 1K08DK101754)Hertz Foundation (Fellowship)National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Visualization of positive and negative sense viral RNA for probing the mechanism of direct-acting antivirals against hepatitis C virus

    Get PDF
    RNA viruses are highly successful pathogens and are the causative agents for many important diseases. To fully understand the replication of these viruses it is necessary to address the roles of both positive-strand RNA ((+)RNA) and negative-strand RNA ((-)RNA), and their interplay with viral and host proteins. Here we used branched DNA (bDNA) fluorescence in situ hybridization (FISH) to stain both the abundant (+)RNA and the far less abundant (-)RNA in both hepatitis C virus (HCV)- and Zika virus-infected cells, and combined these analyses with visualization of viral proteins through confocal imaging. We were able to phenotypically examine HCV-infected cells in the presence of uninfected cells and revealed the effect of direct-acting antivirals on HCV (+)RNA, (-)RNA, and protein, within hours of commencing treatment. Herein, we demonstrate that bDNA FISH is a powerful tool for the study of RNA viruses that can provide insights into drug efficacy and mechanism of action

    CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus

    Get PDF
    Chronic hepatitis B virus (HBV) infection is prevalent, deadly, and seldom cured due to the persistence of viral episomal DNA (cccDNA) in infected cells. Newly developed genome engineering tools may offer the ability to directly cleave viral DNA, thereby promoting viral clearance. Here, we show that the CRISPR/Cas9 system can specifically target and cleave conserved regions in the HBV genome, resulting in robust suppression of viral gene expression and replication. Upon sustained expression of Cas9 and appropriately chosen guide RNAs, we demonstrate cleavage of cccDNA by Cas9 and a dramatic reduction in both cccDNA and other parameters of viral gene expression and replication. Thus, we show that directly targeting viral episomal DNA is a novel therapeutic approach to control the virus and possibly cure patients.United States. National Institutes of Health (DK085713)National Cancer Institute (U.S.) (P30-CA14051)National Institute of Environmental Health Sciences (P30-ES002109)United States. National Institutes of Health (1K08DK101754

    Recapitulation of the hepatitis C virus life-cycle in engineered murine cell lines

    Get PDF
    AbstractHepatitis C virus (HCV) remains a major medical problem. In-depth study of HCV pathogenesis and immune responses is hampered by the lack of suitable small animal models. The narrow host range of HCV remains incompletely understood. We demonstrate that the entire HCV life-cycle can be recapitulated in mouse cells. We show that antiviral signaling interferes with HCV RNA replication in mouse cells. We were able to infect mouse cells expressing human CD81 and occludin (OCLN)—the minimal set of entry factor factors required for HCV uptake into mouse cells. Infected mouse cells sustain HCV RNA replication in the presence of miR122 and release infectious particles when mouse apoE is supplied. Our data demonstrate that the barriers of HCV interspecies transmission can be overcome by engineering a suitable cellular environment and provide a blue-print towards constructing a small animal model for HCV infection

    Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation

    Get PDF
    Detailed study of glial inflammation has been hindered by lack of cell culture systems that spontaneously demonstrate the "neuroinflammatory phenotype". Mice expressing a glycine → alanine substitution in cytosolic Cu, Zn-superoxide dismutase (G93A-SOD1) associated with familial amyotrophic lateral sclerosis (ALS) demonstrate age-dependent neuroinflammation associated with broad-spectrum cytokine, eicosanoid and oxidant production. In order to more precisely study the cellular mechanisms underlying glial activation in the G93A-SOD1 mouse, primary astrocytes were cultured from 7 day mouse neonates. At this age, G93A-SOD1 mice demonstrated no in vivo hallmarks of neuroinflammation. Nonetheless astrocytes cultured from G93A-SOD1 (but not wild-type human SOD1-expressing) transgenic mouse pups demonstrated a significant elevation in either the basal or the tumor necrosis alpha (TNFα)-stimulated levels of proinflammatory eicosanoids prostaglandin E(2 )(PGE(2)) and leukotriene B(4 )(LTB(4)); inducible nitric oxide synthase (iNOS) and ‱NO (indexed by nitrite release into the culture medium); and protein carbonyl products. Specific cytokine- and TNFα death-receptor-associated components were similarly upregulated in cultured G93A-SOD1 cells as assessed by multiprobe ribonuclease protection assays (RPAs) for their mRNA transcripts. Thus, endogenous glial expression of G93A-SOD1 produces a metastable condition in which glia are more prone to enter an activated neuroinflammatory state associated with broad-spectrum increased production of paracrine-acting substances. These findings support a role for active glial involvement in ALS and may provide a useful cell culture tool for the study of glial inflammation

    Expression of paramyxovirus V proteins promotes replication and spread of hepatitis C virus in cultures of primary human fetal liver cells

    Get PDF
    Here we demonstrate that primary cultures of human fetal liver cells (HFLC) reliably support infection with laboratory strains of hepatitis C virus (HCV), although levels of virus replication vary significantly between different donor cell preparations and frequently decline in a manner suggestive of active viral clearance. To investigate possible contributions of the interferon (IFN) system to control HCV infection in HFLC, we exploited the well-characterized ability of paramyxovirus (PMV) V proteins to counteract both IFN induction and antiviral signaling. The V proteins of measles virus (MV) and parainfluenza virus 5 (PIV5) were introduced into HFLC using lentiviral vectors encoding a fluorescent reporter for visualization of HCV-infected cells. V protein-transduced HFLC supported enhanced (10 to 100-fold) levels of HCV infection relative to untransduced or control vector-transduced HFLC. Infection was assessed by measurement of virus-driven luciferase, by assays for infectious HCV and viral RNA, and by direct visualization of HCV-infected hepatocytes. Live cell imaging between 48 and 119 hours postinfection demonstrated little or no spread of infection in the absence of PMV V protein expression. In contrast, V protein-transduced HFLC showed numerous HCV infection events. V protein expression efficiently antagonized the HCV-inhibitory effects of added IFNs in HFLC. In addition, induction of the type III IFN, IL29, following acute HCV infection was inhibited in V protein-transduced cultures. Conclusion: These studies suggest that the cellular IFN response plays a significant role in limiting the spread of HCV infection in primary hepatocyte cultures. Strategies aimed at dampening this response may be key to further development of robust HCV culture systems, enabling studies of virus pathogenicity and the mechanisms by which HCV spreads in its natural host cell population.National Institutes of Health (U.S.) (NIH Roadmap for Medical Research Grant 1 R01 DK085713-01)Greenberg Institute for Medical ResearchStarr Foundatio

    Predicting the Starquakes in PSR J0537-6910

    Get PDF
    We report on more than 7 years of monitoring of PSR J0537-6910, the 16 ms pulsar in the Large Magellanic Cloud, using data acquired with the RXTE. During this campaign the pulsar experienced 23 sudden increases in frequency (``glitches'') amounting to a total gain of over six ppm of rotation frequency superposed on its gradual spindown of d(nu)/d(t) = -2e-10 Hz/s. The time interval from one glitch to the next obeys a strong linear correlation to the amplitude of the first glitch, with a mean slope of about 400 days ppm (6.5 days per uHz), such that these intervals can be predicted to within a few days, an accuracy which has never before been seen in any other pulsar. There appears to be an upper limit of ~40 uHz for the size of glitches in_all_ pulsars, with the 1999 April glitch of J0537 as the largest so far. The change in the spindown of J0537 across the glitches, Delta(d(nu)/d(t)), appears to have the same hard lower limit of -1.5e-13 Hz/s, as, again, that observed in all other pulsars. The spindown continues to increase in the long term, d(d(nu)/d(t))/d(t) = -1e-21 Hz/s/s, and thus the timing age of J0537 (-0.5 nu d(nu)/d(t)) continues to decrease at a rate of nearly one year every year, consistent with movement of its magnetic moment away from its rotational axis by one radian every 10,000 years, or about one meter per year. J0537 was likely to have been born as a nearly-aligned rotator spinning at 75-80 Hz, with a |d(nu)/d(t)| considerably smaller than its current value of 2e-10 Hz/s. The pulse profile of J0537 consists of a single pulse which is found to be flat at its peak for at least 0.02 cycles.Comment: 54 pages, 12 figures. Accepted for publication in The Astrophysical Journal. Cleaner figure 2. V4 -- in line with version accepted by Ap

    Spontaneous allelic variant in deafness–blindness gene \u3ci\u3eUsh1g\u3c/i\u3e resulting in an expanded phenotype

    Get PDF
    Relationships between novel phenotypic behaviors and specific genetic alterations are often discovered using target-specific, directed mutagenesis or phenotypic selection following chemical mutagenesis. An alternative approach is to exploit deficiencies in DNA repair pathways that maintain genetic integrity in response to spontaneously induced damage. Mice deficient in the DNA glycosylase NEIL1 show elevated spontaneous mutations, which arise from translesion DNA synthesis past oxidatively induced base damage. Several litters of Neil1 knockout mice included animals that were distinguished by their backwards-walking behavior in open-field environments, while maintaining frantic forward movements in their home cage environment. Other phenotypic manifestations included swim test failures, head tilting and circling. Mapping of the mutation that conferred these behaviors showed the introduction of a stop codon at amino acid 4 of the Ush1g gene. Ush1gbw/bwnull mice displayed auditory and vestibular defects that are commonly seen with mutations affecting inner-ear hair-cell function, including a complete lack of auditory brainstem responses and vestibular-evoked potentials. As in other Usher syndrome type I mutant mouse lines, hair cell phenotypes included disorganized and split hair bundles, as well as altered distribution of proteins for stereocilia that localize to the tips of row 1 or row 2. Disruption to the bundle and kinocilium displacement suggested that USH1G is essential for forming the hair cell\u27s kinocilial links. Consistent with other Usher type 1 models, Ush1gbw/bw mice had no substantial retinal degeneration compared with Ush1gbw/+ controls. In contrast to previously described Ush1g alleles, this new allele provides the first knockout model for this gene
    • 

    corecore