1,662 research outputs found

    An Approach to Improved Credibility of CFD Simulations for Rocket Injector Design

    Get PDF
    Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by simulating the sensitivity of performance and injector-driven thermal environments to. the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process.. This paper documents the status of an effort to understand and compare the predictive capabilities and resource requirements of a range of CFD methodologies on a set of model problem injectors. Preliminary results from a steady Reynolds-Average Navier-Stokes (RANS), an unsteady Reynolds-Average Navier Stokes (URANS) and three different Large Eddy Simulation (LES) techniques used to model a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants are presented. Initial observations are made comparing instantaneous results, corresponding time-averaged and steady-state solutions in the near -injector flow field. Significant differences in the flow fields exist, as expected, and are discussed. An important preliminary result is the identification of a fundamental mixing mechanism, accounted for by URANS and LES, but missing in the steady BANS methodology. Since propellant mixing is the core injector function, this mixing process may prove to have a profound effect on the ability to more correctly simulate injector performance and resulting thermal environments. Issues important to unifying the basis for future comparison such as solution initialization, required run time and grid resolution are addressed

    Validation of New Process Models for Large Injection-Molded Long-Fiber Thermoplastic Composite Structures

    Full text link
    This report describes the work conducted under the CRADA Nr. PNNL/304 between Battelle PNNL and Autodesk whose objective is to validate the new process models developed under the previous CRADA for large injection-molded LFT composite structures. To this end, the ARD-RSC and fiber length attrition models implemented in the 2013 research version of Moldflow was used to simulate the injection molding of 600-mm x 600-mm x 3-mm plaques from 40% glass/polypropylene (Dow Chemical DLGF9411.00) and 40% glass/polyamide 6,6 (DuPont Zytel 75LG40HSL BK031) materials. The injection molding was performed by Injection Technologies, Inc. at Windsor, Ontario (under a subcontract by Oak Ridge National Laboratory, ORNL) using the mold offered by the Automotive Composite Consortium (ACC). Two fill speeds under the same back pressure were used to produce plaques under slow-fill and fast-fill conditions. Also, two gating options were used to achieve the following desired flow patterns: flows in edge-gated plaques and in center-gated plaques. After molding, ORNL performed measurements of fiber orientation and length distributions for process model validations. The structure of this report is as follows. After the Introduction (Section 1), Section 2 provides a summary of the ARD-RSC and fiber length attrition models. A summary of model implementations in the latest research version of Moldflow is given in Section 3. Section 4 provides the key processing conditions and parameters for molding of the ACC plaques. The validations of the ARD-RSC and fiber length attrition models are presented and discussed in Section 5. The conclusions will be drawn in Section 6

    Response of benthic metabolism and nutrient cycling to reductions in wastewater loading to Boston Harbor, USA

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuarine, Coastal and Shelf Science 151 (2014): 54-68, doi:10.1016/j.ecss.2014.09.018.We describe the long-term response of benthic metabolism in depositional sediments of Boston Harbor, MA, to large reductions in organic matter and nutrient loading. Although Boston Harbor received very high loadings of nutrients and solids it differs from many eutrophic estuaries in that severe hypoxia was prevented by strong tidal flushing. Our study was conducted for 9 years during which a series of improvements to sewage treatment were implemented, followed by 10 years after the culminating step in the clean-up, which was to divert all wastewater effluent offshore. Counter to expectations, sediment oxygen demand and nutrient effluxes initially increased at some stations, reaching some of the highest rates recorded in the literature, and were spatially and temporally quite variable. Early increases were attributed to macrofaunal effects, as sediments at some sites were rapidly colonized by tube-building amphipods, Ampelisca spp., which dominated a dense macrofaunal mat community. As reductions in loading progressed, however, mean rates in oxygen uptake and release of ammonium, nitrate, and phosphate all decreased. At the point of outfall diversion, rates and variability had already decreased substantially. By the end of the study, average oxygen uptake had decreased from 74 to 41 mmol m−2 d−1 and spatial and temporal variability had decreased. Similarly, nutrient fluxes were less than half the rates measured at the start of the project and also less variable. Other evidence of improved conditions included a decrease in the carbon content of sediments at most stations and higher Eh values at all stations, illustrating less reducing conditions. Denitrification also showed an overall decrease from the beginning to the end of the 19-year study, but was highest during the intermediate phases of the cleanup, reaching 9 mmol N m−2 d−1. At the end of the study denitrification averaged for all sites was 2.2 mmol N m−2 d−1, but when compared to current loadings, had become a more important overall sink for N within the harbor. Few long-term examinations of the responses of sediment biogeochemistry to reductions in nutrient and organic matter loading have been reported. Our findings demonstrate that benthic fluxes may respond to reductions in loading in complex ways, and sediments need not represent a long-term legacy that would impede ecosystems recovery.We gratefully acknowledge support for this work from the Massachusetts Water Resources Authority, which was provided through seven contracts for the Harbor and Outfall Monitoring Program to Battelle (Duxbury, MA) or ENSR (Westford, MA), and subcontracts to us

    Recent Advances in Laboratory Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons: PAHs in the Far Infrared

    Get PDF
    Over 25 years of observations and laboratory work have shown that the mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 microns, which originate in free polycyclic aromatic hydrocarbon (PAH) molecules. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (FIR) and emission from these FIR features should be present in astronomical sources showing the Mid-IR PAH bands. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview recent advances in the laboratory spectroscopy of PAHs, Highlighting the FIR spectroscopy along with some quantum calculations

    Improved Imputation of Common and Uncommon Single Nucleotide Polymorphisms (SNPs) with a New Reference Set

    Get PDF
    Statistical imputation of genotype data is an important technique for analysis of genome-wide association studies (GWAS). We have built a reference dataset to improve imputation accuracy for studies of individuals of primarily European descent using genotype data from the Hap1, Omni1, and Omni2.5 human SNP arrays (Illumina). Our dataset contains 2.5-3.1 million variants for 930 European, 157 Asian, and 162 African/African-American individuals. Imputation accuracy of European data from Hap660 or OmniExpress array content, measured by the proportion of variants imputed with R^2^>0.8, improved by 34%, 23% and 12% for variants with MAF of 3%, 5% and 10%, respectively, compared to imputation using publicly available data from 1,000 Genomes and International HapMap projects. The improved accuracy with the use of the new dataset could increase the power for GWAS by as much as 8% relative to genotyping all variants. This reference dataset is available to the scientific community through the NCBI dbGaP portal. Future versions will include additional genotype data as well as non-European populations

    The Primordial Inflation Polarization Explorer (PIPER)

    Get PDF
    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. BICEP2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. PIPER is currently the only suborbital instrument capable of fully testing and extending the BICEP2 results by measuring the B-mode power spectrum on angular scales θ\theta = ~0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. PIPER will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 mK. Polarization sensitivity and systematic control are provided by front-end Variable-delay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each pointing. We describe the PIPER instrument and progress towards its first flight.Comment: 11 pages, 7 figures. To be published in Proceedings of SPIE Volume 9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014, conference 915

    DEFiNE: A Method for Enhancement and Quantification of Fluorescently Labeled Axons

    Get PDF
    Visualization and quantification of fluorescently labeled axonal fibers are widely employed in studies of neuronal connectivity in the brain. However, accurate analysis of axon density is often confounded by autofluorescence and other fluorescent artifacts. By the time these problems are detected in labeled tissue sections, significant time and resources have been invested, and the tissue may not be easy to replace. In response to these difficulties, we have developed Digital Enhancement of Fibers with Noise Elimination (DEFiNE), a method for eliminating fluorescent artifacts from digital images based on their morphology and fluorescence spectrum, thus permitting enhanced visualization and quantification of axonal fibers. Application of this method is facilitated by a DEFiNE macro, written using ImageJ Macro Language (IJM), which includes an automated and customizable procedure for image processing and a semi-automated quantification method that accounts for any remaining local variation in background intensity. The DEFiNE macro is open-source and used with the widely available FIJI software for maximum accessibility
    • …
    corecore