88 research outputs found

    CFD applications in chemical propulsion engines

    Get PDF
    The present research is aimed at developing analytical procedures for predicting the performance and stability characteristics of chemical propulsion engines. Specific emphasis is being placed on understanding the physical and chemical processes in the small engines that are used for applications such as spacecraft attitude control and drag make-up. The small thrust sizes of these engines lead to low nozzle Reynolds numbers with thick boundary layers which may even meet at the nozzle centerline. For this reason, the classical high Reynolds number procedures that are commonly used in the industry are inaccurate and of questionable utility for design. A complete analysis capability for the combined viscous and inviscid regions as well as for the subsonic, transonic, and supersonic portions of the flowfield is necessary to estimate performance levels and to enable tradeoff studies during design procedures

    An overview of the Penn State Propulsion Engineering Research Center

    Get PDF
    An overview of the Penn State Propulsion Engineering Research Center is presented. The following subject areas are covered: research objectives and long term perspective of the Center; current status and operational philosophy; and brief description of Center projects (combustion, fluid mechanics and heat transfer, materials compatibility, turbomachinery, and advanced propulsion concepts)

    Time-derivative preconditioning for viscous flows

    Get PDF
    A time-derivative preconditioning algorithm that is effective over a wide range of flow conditions from inviscid to very diffusive flows and from low speed to supersonic flows was developed. This algorithm uses a viscous set of primary dependent variables to introduce well-conditioned eigenvalues and to avoid having a nonphysical time reversal for viscous flow. The resulting algorithm also provides a mechanism for controlling the inviscid and viscous time step parameters to be of order one for very diffusive flows, thereby ensuring rapid convergence at very viscous flows as well as for inviscid flows. Convergence capabilities are demonstrated through computation of a wide variety of problems

    CFD Applications in Propulsion

    Get PDF
    An overview of various applications of Computational Fluid Dynamics (CFD) algorithms to propulsion problems is given. Topics of interest include incompressible, low speed compressible, transonic, and supersonic problems. A common family of algorithms is used for all applications and emphasis is placed on maintaining accuracy and convergence efficiency for all problems. Specific problems include pump hydrodynamics, simultaneous combustion and mixing in rocket engines, viscous nozzle flow, and CFD applications to combustion stability

    A review of liquid rocket propulsion programs in Japan

    Get PDF
    An assessment of Japan's current capabilities in the areas of space and transatmospheric propulsion is presented. The primary focus is upon Japan's programs in liquid rocket propulsion and in space plane and related transatmospheric areas. Brief reference is also made to their solid rocket programs, as well as to their supersonic air breathing propulsion efforts that are just getting underway

    Viewgraph description of Penn State's Propulsion Engineering Research Center: Activity highlights and future plans

    Get PDF
    Viewgraphs are presented that describe the progress and status of Penn State's Propulsion Engineering Research Center. The Center was established in Jul. 1988 by a grant from NASA's University Space Engineering Research Centers Program. After two and one-half years of operation, some 16 faculty are participating, and the Center is supporting 39 graduate students plus 18 undergraduates. In reviewing the Center's status, long-term plans and goals are reviewed and then the present status of the Center and the highlights and accomplishments of the past year are summarized. An overview of plans for the upcoming year are presented

    NASA flow fields analysis

    Get PDF
    The objectives of the present research are to improve design capabilities for low thrust rocket engines through understanding the detailed mixing and combustion processes in a representative combustor. Of particular interest is a small gaseous hydrogen-oxygen thruster which is considered as a coordinated part of an on-going experimental program at NASA LERC. Detailed computational modeling involves the solution of both the two- and three-dimensional Navier Stokes equations, coupled with chemical reactions and the species diffusion equations. Computations of interest include both steady state and time-accurate flowfields and are obtained by means of LU approximate factorization in time and flux split upwinding differencing in space. The emphasis in the research is focused on using numerical analysis to understand detailed combustor flowfields, including the shear layer dynamics created between fuel film cooling and the core gas in the vicinity on the nearby combustor wall; the integrity and effectiveness of the coolant film; and three-dimensional fuel and oxidizer jet injection/mixing/combustion characteristics in the primary combustor along with their joint impacts on global engine performance

    Multi-dimensional combustor flowfield analyses in gas-gas rocket engine

    Get PDF
    The objectives of the present research are to improve design capabilities for low thrust rocket engines through understanding of the detailed mixing and combustions processes. Of particular interest is a small gaseous hydrogen-oxygen thruster which is considered as a coordinated part of an on-going experimental program at NASA LeRC. Detailed computational modeling requires the application of the full three-dimensional Navier Stokes equations, coupled with species diffusion equations. The numerical procedure is performed on both time-marching and time-accurate algorithms and using an LU approximate factorization in time, flux split upwinding differencing in space. The emphasis in this paper is focused on using numerical analysis to understand detailed combustor flowfields, including the shear layer dynamics created between fuel film cooling and the core gas in the vicinity on the nearby combustor wall; the integrity and effectiveness of the coolant film; three-dimensional fuel jets injection/mixing/combustion characteristics; and their impacts on global engine performance

    Validation of two-equation turbulence models for propulsion flowfields

    Get PDF
    The objective of the study is to assess the capability of two-equation turbulence models for simulating propulsion-related flowfields. The standard kappa-epsilon model with Chien's low Reynolds number formulation for near-wall effects is used as the baseline turbulence model. Several experimental test cases, representative of rocket combustor internal flowfields, are used to catalog the performance of the baseline model. Specific flowfields considered here include recirculating flow behind a backstep, mixing between coaxial jets and planar shear layers. Since turbulence solutions are notoriously dependent on grid and numerical methodology, the effects of grid refinement and artificial dissipation on numerical accuracy are studied. In the latter instance, computational results obtained with several central-differenced and upwind-based formulations are compared. Based on these results, improved turbulence modes such as enhanced kappa-epsilon models as well as other two-equation formulations (e.g., kappa-omega) are being studied. In addition, validation of swirling and reacting flowfields are also currently underway
    corecore