46 research outputs found

    An EIAV field isolate reveals much higher levels of subtype variability than currently reported for the equine lentivirus family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Equine infectious anemia virus (EIAV), a lentivirus that infects horses, has been utilized as an animal model for the study of HIV. Furthermore, the disease associated with the equine lentivirus poses a significant challenge to veterinary medicine around the world. As with all lentiviruses, EIAV has been shown to have a high propensity for genomic sequence and antigenic variation, especially in its envelope (Env) proteins. Recent studies have demonstrated Env variation to be a major determinant of vaccine efficacy, emphasizing the importance of defining natural variation among field isolates of EIAV. To date, however, published EIAV sequences have been reported only for cell-adapted strains of virus, predominantly derived from a single primary virus isolate, EIAV<sub>Wyoming </sub>(EIAV<sub>WY</sub>).</p> <p>Results</p> <p>We present here the first characterization of the Env protein of a natural primary isolate from Pennsylvania (EIAV<sub>PA</sub>) since the widely utilized and referenced EIAV<sub>WY </sub>strain. The data demonstrated that the level of EIAV<sub>PA </sub>Env amino acid sequence variation, approximately 40% as compared to EIAV<sub>WY</sub>, is much greater than current perceptions or published reports of natural EIAV variation between field isolates. This variation did not appear to give rise to changes in the predicted secondary structure of the proteins. While the EIAV<sub>PA </sub>Env was serologically cross reactive with the Env proteins of the cell-adapted reference strain, EIAV<sub>PV </sub>(derivative of EIAV<sub>WY</sub>), the two variant Envs were shown to lack any cross neutralization by immune serum from horses infected with the respective virus strains.</p> <p>Conclusion</p> <p>Taking into account the significance of serum neutralization to universal vaccine efficacy, these findings are crucial considerations towards successful EIAV vaccine development and the potential inclusion of field isolate Envs in vaccine candidates.</p

    Envelope determinants of equine lentiviral vaccine protection

    Get PDF
    Lentiviral envelope (Env) antigenic variation and associated immune evasion present major obstacles to vaccine development. The concept that Env is a critical determinant for vaccine efficacy is well accepted, however defined correlates of protection associated with Env variation have yet to be determined. We reported an attenuated equine infectious anemia virus (EIAV) vaccine study that directly examined the effect of lentiviral Env sequence variation on vaccine efficacy. The study identified a significant, inverse, linear correlation between vaccine efficacy and increasing divergence of the challenge virus Env gp90 protein compared to the vaccine virus gp90. The report demonstrated approximately 100% protection of immunized ponies from disease after challenge by virus with a homologous gp90 (EV0), and roughly 40% protection against challenge by virus (EV13) with a gp90 13% divergent from the vaccine strain. In the current study we examine whether the protection observed when challenging with the EV0 strain could be conferred to animals via chimeric challenge viruses between the EV0 and EV13 strains, allowing for mapping of protection to specific Env sequences. Viruses containing the EV13 proviral backbone and selected domains of the EV0 gp90 were constructed and in vitro and in vivo infectivity examined. Vaccine efficacy studies indicated that homology between the vaccine strain gp90 and the N-terminus of the challenge strain gp90 was capable of inducing immunity that resulted in significantly lower levels of post-challenge virus and significantly delayed the onset of disease. However, a homologous N-terminal region alone inserted in the EV13 backbone could not impart the 100% protection observed with the EV0 strain. Data presented here denote the complicated and potentially contradictory relationship between in vitro virulence and in vivo pathogenicity. The study highlights the importance of structural conformation for immunogens and emphasizes the need for antibody binding, not neutralizing, assays that correlate with vaccine protection

    Variación antigénica del virus de la anemia infecciosa equina.

    Get PDF
    Se utilizaron 16 ponies para efectuar 6 pasajes secuenciales del mencionado virus y generar en ellos variantes del virus. Todos los animales fueron positivos a la prueba de Coggins, alrededor de 2 ó 3 semanas postinoculación sufrieron episodios febriles y las variantes del virus fueron aisladas del 92 por ciento de los plasmas colectivos en períodos febriles y del 51 por ciento en afebriles. Los virus fueron aislados en cultivos de células de riñón de feto equino, sin inducción de efecto citopático. El cambio de la antigenicidad del virus fue demostrado sobre bases serológicas, empleándose la seroneutralización cruzada, con varios virus aislados y del mismo animal, confrontados con sueros provenientes del mismo y colectados en diferentes oportunidades durante la infección crónica ocasionada por el virus de la Anemia. Por procedimientos bioquímicos se demostró que la variación antigénica del virus ocurre en las 2 proteínas externas glicosiladas, mientras que en las proteínas internas del virus permanecen inalteradas en su estructura. Se observó además que los cambios estructurales que dan lugar a la variación antigénica del virus, solo ocurren en el hospedante (caballo), y que manteniendo el virus en cultivos celulares por varios meses, todos los componentes estructurales del mismo permanecen sin alteració

    Envelope Determinants of Equine Lentiviral Vaccine Protection

    Get PDF
    Lentiviral envelope (Env) antigenic variation and associated immune evasion present major obstacles to vaccine development. The concept that Env is a critical determinant for vaccine efficacy is well accepted, however defined correlates of protection associated with Env variation have yet to be determined. We reported an attenuated equine infectious anemia virus (EIAV) vaccine study that directly examined the effect of lentiviral Env sequence variation on vaccine efficacy. The study identified a significant, inverse, linear correlation between vaccine efficacy and increasing divergence of the challenge virus Env gp90 protein compared to the vaccine virus gp90. The report demonstrated approximately 100% protection of immunized ponies from disease after challenge by virus with a homologous gp90 (EV0), and roughly 40% protection against challenge by virus (EV13) with a gp90 13% divergent from the vaccine strain. In the current study we examine whether the protection observed when challenging with the EV0 strain could be conferred to animals via chimeric challenge viruses between the EV0 and EV13 strains, allowing for mapping of protection to specific Env sequences. Viruses containing the EV13 proviral backbone and selected domains of the EV0 gp90 were constructed and in vitro and in vivo infectivity examined. Vaccine efficacy studies indicated that homology between the vaccine strain gp90 and the N-terminus of the challenge strain gp90 was capable of inducing immunity that resulted in significantly lower levels of post-challenge virus and significantly delayed the onset of disease. However, a homologous N-terminal region alone inserted in the EV13 backbone could not impart the 100% protection observed with the EV0 strain. Data presented here denote the complicated and potentially contradictory relationship between in vitro virulence and in vivo pathogenicity. The study highlights the importance of structural conformation for immunogens and emphasizes the need for antibody binding, not neutralizing, assays that correlate with vaccine protection. © 2013 Craigo et al

    Equine Infectious Anemia Virus Envelope Evolution In Vivo during Persistent Infection Progressively Increases Resistance to In Vitro Serum Antibody Neutralization as a Dominant Phenotype

    No full text
    Equine infectious anemia virus (EIAV) infection of horses is characterized by well-defined waves of viremia associated with the sequential evolution of distinct viral populations displaying extensive envelope gp90 variation; however, a correlation of in vivo envelope evolution with in vitro serum neutralization phenotype remains undefined. Therefore, the goal of the present study was to utilize a previously defined panel of natural variant EIAV envelope isolates from sequential febrile episodes to characterize the effects of envelope variation during persistent infection on viral neutralization phenotypes and to define the determinants of EIAV envelope neutralization specificity. To assess the neutralization phenotypes of the sequential EIAV envelope variants, we determined the sensitivity of five variant envelopes to neutralization by a longitudinal panel of immune serum from the source infected pony. The results indicated that the evolution of the EIAV envelope sequences observed during sequential febrile episodes produced an increasingly neutralization-resistant phenotype. To further define the envelope determinants of EIAV neutralization specificity, we examined the neutralization properties of a panel of chimeric envelope constructs derived from reciprocal envelope domain exchanges between selected neutralization-sensitive and neutralization-resistant envelope variants. These results indicated that the EIAV gp90 V3 and V4 domains individually conferred serum neutralization resistance while other envelope segments in addition to V3 and V4 were evidently required for conferring total serum neutralization sensitivity. These data clearly demonstrate for the first time the influence of sequential gp90 variation during persistent infection in increasing envelope neutralization resistance, identify the gp90 V3 and V4 domains as the principal determinants of antibody neutralization resistance, and indicate distinct complex cooperative envelope domain interactions in defining sensitivity to serum antibody neutralization

    Apparent elimination of EIAV ancestral species in a long-term inapparent carrier

    Get PDF
    International audienceEquine infectious anemia virus (EIAV) envelope variation produces newly dominant quasispecies with each sequential disease cycle; new populations arise, and previous plasma quasispecies, including the original inoculum, become undetectable. The question remains whether these ancestral variants exist in tissue reservoirs or if the immune system eliminates quasispecies from persistent infections. To examine this, an EIAV long-term inapparent carrier was immune suppressed with dexamethasone. Immune suppression resulted in increased plasma viral loads by approximately 104 fold. Characterization of pre- and post-immune suppression populations demonstrated continual envelope evolution and revealed novel quasispecies distinct from defined populations from previous disease stages. Analysis of the tissue and plasma populations post-immune suppression indicated the original infectious inoculum and early populations were undetectable. Therefore, the host immune system apparently eliminated a diverse array of antigenic variants, but viral persistence was maintained by relentless evolution of new envelope populations from tissue reservoirs in response to ongoing immune pressures
    corecore