84 research outputs found

    Structure activity relationships for derivatives of adenosine-5?-triphosphate as agonists at P2 purinoceptors: Heterogeneity within P2x and P2y subtypes

    Get PDF
    The structure-activity relationships for a variety of adenine nucleotide analogues at P2x- and P2Y-purinoceptors were investigated. Compounds formed by structural modifications of the ATP molecule including substitutions of the purine ring (C2, C8, N1, and N6-substituents, and a uridine base instead of adenine), the ribose moiety (2′ and 3′-positions), and the triphosphate group (lower phosphates, bridging oxygen substitution, and cyclization) were prepared. Pharmacological activity at P2Y-purinoceptors was assayed in the guinea pig taenia coli, endothelial cells of the rabbit aorta, smooth muscle of the rabbit mesenteric artery, and turkey erythrocyte membranes. Activity at P2X-purinoceptors was assayed in the rabbit saphenous artery and the guinea-pig vas deferens and urinary bladder. Some of the analogues displayed selectivity, or even specificity, for either the P2X- or the P2Y-purinoceptors. Certain analogues displayed selectivity or specificity within the P2X- or P2Y-purinoceptor superfamilies, giving hints about possible subclasses. For example, 8-(6-aminohexylamino)ATP and 2′,3′-isopropylidene-AMP were selective for endothelial Pzypurinoceptors over P2Y-purinoceptors in the guinea pig taenia coli, rabbit aorta, and turkey erythrocytes. These compounds were both inactive at P2X-purinoceptors. The potent agonist N6-methyl ATP and the somewhat less potent agonist 2′-deoxy-ATP were selective for P2Y-purinoceptors in the guinea pig taenia coli, but were inactive at P2X-purinoceptors and the vascular P2Y-purinoceptors. 3′-Benzylamino-3′-deoxyATP was very potent at the P2X-purinoceptors in the guinea pig vas deferens and bladder, but not in the rabbit saphenous artery and was inactive at P2Y receptors. These data suggest that specific compounds can be developed that can be utilized to activate putative subtypes of the P2X- and P2Y-purinoceptor classes

    Identification of potent, selective P2Y-purinoceptor agonists: structure-activity relationships for 2-thioether derivatives of adenosine 5'-triphosphate

    Get PDF
    Study of P2-purinoceptor subtypes has been difficult due to the lack of potent and selective ligands. With the goal of developing high affinity P2-purinoceptor-selective agonists, we have synthesized a series of analogues of adenine nucleotides modified on the purine ring as chain-extended 2-thioethers or as N6-methyl-substituted compounds. Chemical functionality incorporated in the thioether moiety included cyanoalkyl, nitroaromatic, amino, thiol, cycloalkyl, n-alkyl, and olefinic groups. Apparent affinity of the compounds for P2Y-purinoceptors was established by measurement of P2Y-purinoceptor-promoted phospholipase C activity in turkey erythrocyte membranes and relaxation of carbachol-contracted smooth muscle in three different preparations (guinea pig taenia coil, rabbit aorta, and rabbit mesenteric artery). Activity at P2X-purinoceptors was established by measurement of contraction of rabbit saphenous artery and of the guinea pig vas deferens and urinary bladder. All 11 of the 2-thioethers of ATP stimulated the production of inositol phosphates with K0.5 values of 1.5–770 nM, with an (aminophenyl)ethyl derivative being most potent. Two adenosine diphosphate analogues were equipotent to the corresponding ATP analogues. Adenosine monophosphate analogues were full agonists, although generally 4 orders of magnitude less potent. ATP 2-thioethers displayed pD2 values in the range of 6–8 in smooth muscle assay systems for activity at P2Y-receptors. There was a significant correlation for the 2-thioether compounds between the pK0.5 values for inositol phosphate production and the pD2 values for relaxation mediated via the P2Y-purinoceptors in the guinea pig taenia coli, but not for the vascular P2Y-receptors or for the P2X-receptors. At P2X-receptors, no activity was observed in the rabbit saphenous artery, but variable degrees of activity were observed in the guinea pig vas deferens and bladder depending on distal substituents of the thioether moiety. N6-Methyl-ATP was inactive at P2X-receptors, and approximately equipotent to ATP at taenia coli P2Y-receptors. This suggested that hybrid N6-methyl and 2-thioether ATP derivatives might be potent and selective for certain P2Y-receptors, as was shown for one such derivative, N6-methyl-2-(5-hexenylthio)-ATP

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    A cyclic universe with colour fields

    Full text link
    The topology of the universe is discussed in relation to the singularity problem. We explore the possibility that the initial state of the universe might have had a structure with 3-Klein bottle topology, which would lead to a model of a nonsingular oscillating (cyclic) universe with a well-defined boundary condition. The same topology is assumed to be intrinsic to the nature of the hypothetical primitive constituents of matter (usually called preons) giving rise to the observed variety of elementary particles. Some phenomenological implications of this approach are also discussed.Comment: 21 pages, 9 figures; v.4: final versio

    Synthesis of the elements in stars: forty years of progress

    Full text link

    Integrated Molecular Characterization of Uterine Carcinosarcoma

    Get PDF
    SummaryWe performed genomic, epigenomic, transcriptomic, and proteomic characterizations of uterine carcinosarcomas (UCSs). Cohort samples had extensive copy-number alterations and highly recurrent somatic mutations. Frequent mutations were found in TP53, PTEN, PIK3CA, PPP2R1A, FBXW7, and KRAS, similar to endometrioid and serous uterine carcinomas. Transcriptome sequencing identified a strong epithelial-to-mesenchymal transition (EMT) gene signature in a subset of cases that was attributable to epigenetic alterations at microRNA promoters. The range of EMT scores in UCS was the largest among all tumor types studied via The Cancer Genome Atlas. UCSs shared proteomic features with gynecologic carcinomas and sarcomas with intermediate EMT features. Multiple somatic mutations and copy-number alterations in genes that are therapeutic targets were identified

    Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH -Mutant Molecular Profiles

    Get PDF
    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance
    • …
    corecore