299 research outputs found

    Molecular Exploration of the First-Century Tomb of the Shroud in Akeldama, Jerusalem

    Get PDF
    The Tomb of the Shroud is a first-century C. E. tomb discovered in Akeldama, Jerusalem, Israel that had been illegally entered and looted. The investigation of this tomb by an interdisciplinary team of researchers began in 2000. More than twenty stone ossuaries for collecting human bones were found, along with textiles from a burial shroud, hair and skeletal remains. The research presented here focuses on genetic analysis of the bioarchaeological remains from the tomb using mitochondrial DNA to examine familial relationships of the individuals within the tomb and molecular screening for the presence of disease. There are three mitochondrial haplotypes shared between a number of the remains analyzed suggesting a possible family tomb. There were two pathogens genetically detected within the collection of osteological samples, these were Mycobacterium tuberculosis and Mycobacterium leprae. The Tomb of the Shroud is one of very few examples of a preserved shrouded human burial and the only example of a plaster sealed loculus with remains genetically confirmed to have belonged to a shrouded male individual that suffered from tuberculosis and leprosy dating to the first-century C.E. This is the earliest case of leprosy with a confirmed date in which M. leprae DNA was detected

    Simultaneous detection of Mycobacterium bovis and M. tuberculosis in an apparentlyimmunocompetent patient

    Get PDF
    Mycobacterium tuberculosis remains the main cause of human tuberculosis (TB), with an unknown proportion of cases caused by M. bovis. Here we describe a case of pulmonary TB caused by mixed infection as studied from sequential sputum sampling and isolation of M. tuberculosis and M. bovis using a reverse dot blot (RDB) assay

    First-Time Detection of Mycobacterium bovis in Livestock Tissues and Milk in the West Bank, Palestinian Territories

    Get PDF
    Background: Bovine tuberculosis, bTB, is classified by the WHO as one of the seven neglected zoonontic diseases that cause animal health problems and has high potential to infect humans. In the West Bank, bTB was not studied among animals and the prevalence of human tuberculosis caused by M. bovis is unknown. Therefore, the aim of this study was to estimate the prevalence of bTB among cattle and goats and identify the molecular characteristics of bTB in our area. Methodology/principal findings: A total of 208 tissue samples, representing 104 animals, and 150 raw milk samples, obtained from cows and goats were examined for the presence of mycobacteria. The tissue samples were collected during routine meat inspection from the Jericho abattoir. DNA was extracted from all samples, milk and tissue biopsies (n = 358), and screened for presence of TB DNA by amplifying a 123-bp segment of the insertion sequence IS6110. Eight out of 254 animals (3.1%) were found to be TB positive based on the IS6110-PCR. Identification of M. bovis among the positive TB samples was carried out via real time PCR followed by high resolution melt curve analysis, targeting the A/G transition along the oxyR gene. Spoligotyping analysis revealed a new genotype of M. bovis that was revealed from one tissue sample. Significance: Detection of M. bovis in tissue and milk of livestock suggests that apparently healthy cattle and goats are a potential source of infection of bTB and may pose a risk to public health. Hence, appropriate measures including meat inspection at abattoirs in the region are required together with promotion of a health campaign emphasizing the importance of drinking pasteurized milk. In addition, further studies are essential at the farm level to determine the exact prevalence of bTB in goats and cattle herds in the West Bank and Israel.Financial support was provided by the Dutch government; project M27-072NVHU 2009 02 ‘Vector-Borne Pathogens in Israel and the Palestinian Authority.’ The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Genetic characterization of Mycobacterium tuberculosis in the West Bank, Palestinian Territories

    Get PDF
    BACKGROUND: The World Health Organization (WHO) declared human tuberculosis (TB) a global health emergency and launched the “Global Plan to Stop Tuberculosis” which aims to save a million lives by 2015. Global control of TB is increasingly dependent on rapid and accurate genetic typing of species of the Mycobacterium tuberculosis (MTB) complex including M. tuberculosis. The aim of this study was to identify and genetically characterize the MTB isolates circulating in the West Bank, Palestinian Territories. Genotyping of the MTB isolates from patients with pulmonary TB was carried out using two molecular genetic techniques, spoligotyping and mycobacterial interspersed repetitive units-variable number of tandem repeat (MIRU-VNTR) supported by analysis of the MTB specific deletion 1 (TbD1). FINDINGS: A total of 17 MTB patterns were obtained from the 31 clinical isolates analyzed by spoligotyping; corresponding to 2 orphans and 15 shared-types (SITs). Fourteen SITs matched a preexisting shared-type in the SITVIT2 database, whereas a single shared-type SIT3348 was newly created. The most common spoligotyping profile was SIT53 (T1 variant), identified in 35.5 % of the TB cases studied. Genetic characterization of 22 clinical isolates via the 15 loci MIRU-VNTR typing distinguished 19 patterns. The 15-loci MIT144 and MIT145 were newly created within this study. Both methods determined the present of M. bovis strains among the isolates. CONCLUSIONS: Significant diversity among the MTB isolates circulating in the West Bank was identified with SIT53-T1 genotype being the most frequent strain. Our results are used as reference database of the strains circulating in our region and may facilitate the implementation of an efficient TB control program

    Comparison of doctor and patient assessments of asthma control

    Get PDF
    INTRODUCTION: The objective of asthma management is to control the condition. However, world-wide surveys reveal that only 5% of asthmatics are well controlled. One reason for this phenomenon is the fact that patients and doctors consistently over-estimate control. This study compared patient and doctor assessment of asthma control. METHODS: A random sample of asthmatics was identified by practitioners in South Africa. Patients completed an Asthma Control Test (ACT) and provided a list of medications currently being taken. The doctor also provided an assessment of control which was summarised into the categories - ’not controlled’ and ’controlled’ and listed all medications prescribed. RESULTS: The mean ACT score was 12.8 where doctors assessed the patients as being ‘not controlled’ and 20.7 where doctors assessed the patients as being ‘controlled’. Half of the patients classified themselves as being ‘not controlled’ (ACT score <20, category 1), while doctors classified only 33% of patients as being ‘not controlled’. Although only 7% of patients disagreed with the doctor’s classification of ‘not controlled’, 29% disagreed with the doctor’s assessment of being ‘controlled’. There was a significant difference in ACT score between the sexes (p < 0.0001). Most therapeutic interventions (with the exception of combination products [ICS þ LABA]) performed poorly with regard to level of control. CONCLUSION: This study suggests that asthma still appears to be relatively poorly controlled in South Africa, although levels of patient control appear to have improved compared to previous surveys, and confirms that physicians and patients differ in their assessments of asthma control.The study was funded by an unrestricted financial grant from Glaxo SmithKline

    Evolutionary changes in the genome of Mycobacterium tuberculosis and the human genome from 9000 years BP until modern times

    Get PDF
    The demonstration of Mycobacterium tuberculosis DNA in ancient skeletons gives researchers an insight into its evolution. Findings of the last two decades sketched the biological relationships between the various species of tubercle bacilli, the time scale involved, their possible origin and dispersal. This paper includes the available evidence and on-going research. In the submerged Eastern Mediterranean Neolithic village of Atlit Yam (9000 BP), a human lineage of M. tuberculosis, defined by the TbD1 deletion in its genome, was demonstrated. An infected infant at the site provides an example of active tuberculosis in a human with a naïve immune system. Over 4000 years later tuberculosis was found in Jericho. Urbanization increases population density encouraging M. tuberculosis/human co-evolution. As susceptible humans die of tuberculosis, survivors develop genetic resistance to disease. Thus in 18th century Hungarian mummies from V ac, 65% were positive for tuberculosis yet a 95-year-old woman had clearly survived a childhood Ghon lesion. Whole genome studies are in progress, to detect changes over the millennia both in bacterial virulence and also host susceptibility/resistance genes that determine the NRAMP protein and Killer Cell Immunoglobulin-like Receptors (KIRs). This paper surveys present evidence and includes initial findings.The contribution made by our many collaborators, researchers and students is gratefully acknowledged. Special acknowledgement is due to Dr Angela Gernaey (deceased) who helped pioneer the early mycolic acid work on the bison bone
    corecore