27 research outputs found

    Magnetic-crystallographic phase diagram of superconducting parent compound Fe1+x_{1+x}Te

    Full text link
    hrough neutron diffraction experiments, including spin-polarized measurements, we find a collinear incommensurate spin-density wave with propagation vector k= \mathbf k = (0.4481(4)0120.4481(4) \, \,0 \, \, \frac1 2) at base temperature in the superconducting parent compound Fe1+x_{1+x}Te. This critical concentration of interstitial iron corresponds to x12x \approx 12% and leads crystallographic phase separation at base temperature. The spin-density wave is short-range ordered with a correlation length of 22(3) \AA, and as the ordering temperature is approached its propagation vector decreases linearly in the H-direction and becomes long-range ordered. Upon further populating the interstitial iron site, the spin-density wave gives way to an incommensurate helical ordering with propagation vector k= \mathbf k = (0.3855(2)0120.3855(2) \, \,0 \, \, \frac1 2) at base temperature. For a sample with x9(1)x \approx 9(1) %, we also find an incommensurate spin-density wave that competes with the bicollinear commensurate ordering close to the N\'eel point. The shifting of spectral weight between competing magnetic orderings observed in several samples is supporting evidence for the phase separation being electronic in nature, and hence leads to crystallographic phase separation around the critical interstitial iron concentration of 12%. With results from both powder and single crystal samples, we construct a magnetic-crystallographic phase diagram of Fe1+x_{1+x}Te for $ 5% < x <17%

    AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    No full text
    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å(-1). A detailed description of this flexible instrument and its performance characteristics in various operating modes are given.D. J. M. is supported through a NSF NIRT grant Contract No. 0304062

    Spiral Spin Structures and Origin of the Magnetoelectric Coupling in YMn\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e5\u3c/sub\u3e

    Get PDF
    By combining neutron four-circle diffraction and polarized neutron-diffraction techniques we have determined the complex spin structures of a multiferroic YMn2O5 that exhibits two ferroelectric phases at low temperatures. The obtained magnetic structure has spiral components in both the low-temperature ferroelectric phases that are magnetically commensurate and incommensurate, respectively. Among proposed microscopic theories for the magnetoelectric coupling, our results are consistent with both the spin-current mechanism and the magnetostriction mechanism. Our results also explain why the electric polarization changes at the low-temperature commensurate-to-incommensurate phase transition
    corecore