73 research outputs found

    Immediate rescue designs in pediatric analgesic trials: a systematic review and meta-analysis

    Get PDF
    Designing analgesic clinical trials in pediatrics requires a balance between scientific, ethical, and practical concerns. A previous consensus group recommended immediate rescue designs using opioid sparing as a surrogate measure of analgesic efficacy. The authors summarize the performance of rescue analgesic designs in pediatric trials of four commonly used classes of analgesics: opioids, nonsteroidal antiinflammatory drugs, acetaminophen, and local anesthetics.; MEDLINE, Embase, CINAHL, The Cochrane Library, and Web of science were searched in April 2013. The 85 studies selected were randomized or controlled clinical trials using immediate rescue paradigms in postoperative pain settings. A random-effects meta-analysis was used to synthesize predefined outcomes using Hedges' g. Difference between the means of the treatment arms were also expressed as a percentage of the corresponding value in the placebo group (placebo-treatment/placebo). Distributions of pain scores in study and control groups and relationships between opioid sparing and pain scores were examined.; For each of the four study drug classes, significant opioid sparing was demonstrated in a majority of studies by one or more of the following endpoints: (1) total dose (milligram per kilogram per hour), (2) percentage of children requiring rescue medication, and (3) time to first rescue medication (minutes). Pain scores averaged 2.4/10 in study groups, 3.4/10 in control groups.; Opioid sparing is a feasible pragmatic endpoint for pediatric pain analgesic trials. This review serves to guide future research in pediatric analgesia trials, which could test whether some specific design features may improve assay sensitivity while minimizing the risk of unrelieved pain

    Transient and Persistent Pain Induced Connectivity Alterations in Pediatric Complex Regional Pain Syndrome

    Get PDF
    Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS) patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1) Transient increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb vs. unaffected limb in the CRPS state, but with normalized connectivity patterns in the recovered state; and (2) Persistent increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb as compared to the unaffected limb that persisted also in the recovered state (recovered affected limb versus recovered unaffected limb). The data support the notion that even after symptomatic recovery, alterations in brain systems persist, particularly in amygdala and basal ganglia systems. Connectivity analysis may provide a measure of temporal normalization of different circuits/regions when evaluating therapeutic interventions for this condition. The results add emphasis to the importance of early recognition and management in improving outcome of pediatric CRPS

    Neural Correlates of Anesthesia in Newborn Mice and Humans

    Get PDF
    Monitoring the hypnotic component of anesthesia during surgeries is critical to prevent intraoperative awareness and reduce adverse side effects. For this purpose, electroencephalographic (EEG) methods complementing measures of autonomic functions and behavioral responses are in use in clinical practice. However, in human neonates and infants existing methods may be unreliable and the correlation between brain activity and anesthetic depth is still poorly understood. Here, we characterized the effects of different anesthetics on brain activity in neonatal mice and developed machine learning approaches to identify electrophysiological features predicting inspired or end-tidal anesthetic concentration as a proxy for anesthetic depth. We show that similar features from EEG recordings can be applied to predict anesthetic concentration in neonatal mice and humans. These results might support a novel strategy to monitor anesthetic depth in human newborns

    Tetrodotoxin-Bupivacaine-Epinephrine Combinations for Prolonged Local Anesthesia

    Get PDF
    Currently available local anesthetics have analgesic durations in humans generally less than 12 hours. Prolonged-duration local anesthetics will be useful for postoperative analgesia. Previous studies showed that in rats, combinations of tetrodotoxin (TTX) with bupivacaine had supra-additive effects on sciatic block durations. In those studies, epinephrine combined with TTX prolonged blocks more than 10-fold, while reducing systemic toxicity. TTX, formulated as Tectin, is in phase III clinical trials as an injectable systemic analgesic for chronic cancer pain. Here, we examine dose-duration relationships and sciatic nerve histology following local nerve blocks with combinations of Tectin with bupivacaine 0.25% (2.5 mg/mL) solutions, with or without epinephrine 5 µg/mL (1:200,000) in rats. Percutaneous sciatic blockade was performed in Sprague-Dawley rats, and intensity and duration of sensory blockade was tested blindly with different Tectin-bupivacaine-epinephrine combinations. Between-group comparisons were analyzed using ANOVA and post-hoc Sidak tests. Nerves were examined blindly for signs of injury. Blocks containing bupivacaine 0.25% with Tectin 10 µM and epinephrine 5 µg/mL were prolonged by roughly 3-fold compared to blocks with bupivacaine 0.25% plain (P < 0.001) or bupivacaine 0.25% with epinephrine 5 µg/mL (P < 0.001). Nerve histology was benign for all groups. Combinations of Tectin in bupivacaine 0.25% with epinephrine 5 µg/mL appear promising for prolonged duration of local anesthesia

    Challenges of functional imaging research of pain in children

    Get PDF
    Functional imaging has revolutionized the neurosciences. In the pain field it has dramatically altered our understanding of how the brain undergoes significant functional, anatomical and chemical changes in patients with chronic pain. However, most studies have been performed in adults. Because functional imaging is non-invasive and can be performed in awake individuals, applications in children have become more prevalent, but only recently in the pain field. Measures of changes in the brains of children have important implications in understanding neural plasticity in response to acute and chronic pain in the developing brain. Such findings may have implications for treatments in children affected by chronic pain and provide novel insights into chronic pain syndromes in adults. In this review we summarize this potential and discuss specific concerns related to the imaging of pain in children

    Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS)trial

    Get PDF
    Background: In laboratory animals, exposure to most general anaesthetics leads to neurotoxicity manifested by neuronal cell death and abnormal behaviour and cognition. Some large human cohort studies have shown an association between general anaesthesia at a young age and subsequent neurodevelopmental deficits, but these studies are prone to bias. Others have found no evidence for an association. We aimed to establish whether general anaesthesia in early infancy affects neurodevelopmental outcomes. Methods: In this international, assessor-masked, equivalence, randomised, controlled trial conducted at 28 hospitals in Australia, Italy, the USA, the UK, Canada, the Netherlands, and New Zealand, we recruited infants of less than 60 weeks' postmenstrual age who were born at more than 26 weeks

    Two Coupled Oscillators: Simulations of the Circadian Pacemaker in Mammalian Activity Rhythms

    Get PDF
    In the activity rhythms of captive small mammals a variety of features, most notably “splitting”, sugges that two coupled oscillators may constitute the pacemaker system which underlies the rhythms. A proposed phenomenological model is developed and expanded here using an explicit quantitative structure. It is found that such a system can simulate several qualitative features in the experimental data: the interdependence of free-running period (τ) and activity time (α) with changing light intensity described in Aschoff’s rule, after-effects on τ and α of prior conditions, and the occasional existence of two stable phase relationships, with different τ values for a given light intensity, as observed in “splitting”. It is hoped that the model will suggest experiments aimed at the elucidation of the physiological basis of these phenomena.
    • …
    corecore