265 research outputs found
Decoherence of electron spin qubits in Si-based quantum computers
Direct phonon spin-lattice relaxation of an electron qubit bound by a donor
impurity or quantum dot in SiGe heterostructures is investigated. The aim is to
evaluate the importance of decoherence from this mechanism in several important
solid-state quantum computer designs operating at low temperatures. We
calculate the relaxation rate as a function of [100] uniaxial strain,
temperature, magnetic field, and silicon/germanium content for Si:P bound
electrons. The quantum dot potential is much smoother, leading to smaller
splittings of the valley degeneracies. We have estimated these splittings in
order to obtain upper bounds for the relaxation rate. In general, we find that
the relaxation rate is strongly decreased by uniaxial compressive strain in a
SiGe-Si-SiGe quantum well, making this strain an important positive design
feature. Ge in high concentrations (particularly over 85%) increases the rate,
making Si-rich materials preferable. We conclude that SiGe bound electron
qubits must meet certain conditions to minimize decoherence but that
spin-phonon relaxation does not rule out the solid-state implementation of
error-tolerant quantum computing.Comment: 8 figures. To appear in PRB-July 2002. Revisions include: some
references added/corrected, several typos fixed, a few things clarified.
Nothing dramati
Dilepton-tagged jets in relativistic nucleus-nucleus collisions: A case study
We study the A+B -> l+ l- + jet +X process in nucleus-nucleus collisions at
relativistic energies. The dilepton as well as the jet will pass through the
matter produced in such collisions. The recoiling dilepton will carry
information about the kinematical features of the jet, and will thus prove to
be a very effective tool in isolating in-medium effects such as energy-loss and
fragmentation function modifications. We estimate the contributions due to
correlated charm and bottom decay and we identify a window where they are small
as compared to pairs from the NLO Drell-Yan process.Comment: 7 pages, 9 figures Two figures modified, references adde
Fock-Darwin-like quantum dot states formed by charged Mn interstitial ions
We report a method of creating electrostatically induced quantum dots by thermal diffusion of interstitial Mn ions out of a p-type (GaMn)As layer into the vicinity of a GaAs quantum well. This approach creates deep, approximately circular, and strongly confined dotlike potential minima in a large (200  μm) mesa diode structure without need for advanced lithography or electrostatic gating. Magnetotunneling spectroscopy of an individual dot reveals the symmetry of its electronic eigenfunctions and a rich energy level spectrum of Fock-Darwin-like states with an orbital angular momentum component |lz| from 0 to 11
- …