4 research outputs found

    Supercooling: A Promising Technique for Prolonged Organ Preservation in Solid Organ Transplantation, and Early Perspectives in Vascularized Composite Allografts.

    Get PDF
    Ex-vivo preservation of transplanted organs is undergoing spectacular advances. Machine perfusion is now used in common practice for abdominal and thoracic organ transportation and preservation, and early results are in favor of substantially improved outcomes. It is based on decreasing ischemia-reperfusion phenomena by providing physiological or sub-physiological conditions until transplantation. Alternatively, supercooling techniques involving static preservation at negative temperatures while avoiding ice formation have shown encouraging results in solid organs. Here, the rationale is to decrease the organ's metabolism and need for oxygen and nutrients, allowing for extended preservation durations. The aim of this work is to review all advances of supercooling in transplantation, browsing the literature for each organ. A specific objective was also to study the initial evidence, the prospects, and potential applications of supercooling preservation in Vascularized Composite Allotransplantation (VCA). This complex entity needs a substantial effort to improve long-term outcomes, marked by chronic rejection. Improving preservation techniques is critical to ensure the favorable evolution of VCAs, and supercooling techniques could greatly participate in these advances

    Modified Tail Vein and Penile Vein Puncture for Blood Sampling in the Rat Model.

    No full text
    Blood samples are required in most experimental animal designs to assess various hematological parameters. This paper presents two procedures for blood collection in rats: the lateral tail vein puncture and the dorsal penile vein puncture, which offer significant advantages over other previously described techniques. This study shows that these two procedures allow for fast sampling (under 10 min) and yield sufficient blood volumes for most assays (202 μL ± 67.7 μL). The dorsal penile vein puncture must be done under anesthesia, whereas the lateral tail vein puncture can be done on a conscious, restrained animal. Alternating these two techniques, therefore, enables blood draw in any situation. While it is always recommended for an operator to be assisted during a procedure to ensure animal welfare, these techniques require only a single operator, unlike most blood sampling methods that require two. Moreover, whereas these previously described methods (e.g., jugular stick, subclavian vein blood draw) require extensive prior training to avoid harm to or death of the animal, tail vein and dorsal penile vein puncture are rarely fatal. For all these reasons, and according to the context (e.g., for studies including male rats, during the perioperative or immediate postoperative period, for animals with thin tail veins), both techniques can be used alternately to enable repeated blood draws

    Supercooling: a promising technique for prolonged preservation in solid organ transplantation, and early perspectives in vascularized composite allografts

    No full text
    International audienceEx vivo preservation of transplanted organs is undergoing spectacular advances. Machine perfusion is now used in common practice for abdominal and thoracic organ transportation and preservation, and early results are in favor of substantially improved outcomes. It is based on decreasing ischemia-reperfusion phenomena by providing physiological or sub-physiological conditions until transplantation. Alternatively, supercooling techniques involving static preservation at negative temperatures while avoiding ice formation have shown encouraging results in solid organs. Here, the rationale is to decrease the organ's metabolism and need for oxygen and nutrients, allowing for extended preservation durations. The aim of this work is to review all advances of supercooling in transplantation, browsing the literature for each organ. A specific objective was also to study the initial evidence, the prospects, and potential applications of supercooling preservation in Vascularized Composite Allotransplantation (VCA). This complex entity needs a substantial effort to improve long-term outcomes, marked by chronic rejection. Improving preservation techniques is critical to ensure the favorable evolution of VCAs, and supercooling techniques could greatly participate in these advances

    VCA supercooling in a swine partial hindlimb model

    No full text
    International audienceVascularized composite allotransplantations are complex procedures with substantial functional impact on patients. Extended preservation of VCAs is of major importance in advancing this field. It would result in improved donor-recipient matching as well as the potential for ex vivo manipulation with gene and cell therapies. Moreover, it would make logistically feasible immune tolerance induction protocols through mixed chimerism. Supercooling techniques have shown promising results in multi-day liver preservation. It consists of reaching sub-zero temperatures while preventing ice formation within the graft by using various cryoprotective agents. By drastically decreasing the cell metabolism and need for oxygen and nutrients, supercooling allows extended preservation and recovery with lower ischemia-reperfusion injuries. This study is the first to demonstrate the supercooling of a large animal model of VCA. Porcine hindlimbs underwent 48 h of preservation at - 5 degrees C followed by recovery and normothermic machine perfusion assessment, with no issues in ice formation and favorable levels of injury markers. Our findings provide valuable preliminary results, suggesting a promising future for extended VCA preservation
    corecore