10 research outputs found

    Stable optimisation-based scenario generation via game theoretic approach

    Full text link
    Systematic scenario generation (SG) methods have emerged as an invaluable tool to handle uncertainty towards the efficient solution of stochastic programming (SP) problems. The quality of SG methods depends on their consistency to generate scenario sets which guarantee stability on solving SPs and lead to stochastic solutions of good quality. In this context, we delve into the optimisation-based Distribution and Moment Matching Problem (DMP) for scenario generation and propose a game-theoretic approach which is formulated as a Mixed-Integer Linear Programming (MILP) model. Nash bargaining approach is employed and the terms of the objective function regarding the statistical matching of the DMP are considered as players. Results from a capacity planning case study highlight the quality of the stochastic solutions obtained using MILP DMP models for scenario generation. Furthermore, the proposed game-theoretic extension of DMP enhances in-sample and out-of-sample stability with respect to the challenging problem of user-defined parameters variability

    Data-driven scenario generation for two-stage stochastic programming

    Get PDF
    Optimisation under uncertainty has always been a focal point within the Process Systems Engineering (PSE) research agenda. In particular, the efficient manipulation of large amount of data for the uncertain parameters constitutes a crucial condition for effectively tackling stochastic programming problems. In this context, this work proposes a new data-driven Mixed-Integer Linear Programming (MILP) model for the Distribution & Moment Matching Problem (DMP). For cases with multiple uncertain parameters a copula-based simulation of initial scenarios is employed as preliminary step. Moreover, the integration of clustering methods and DMP in the proposed model is shown to enhance computational performance. Finally, we compare the proposed approach with state-of-the-art scenario generation methodologies. Through a number of case studies we highlight the benefits regarding the quality of the generated scenario trees by evaluating the corresponding obtained stochastic solutions

    The impact of 100% electrification of domestic heat in Great Britain

    Get PDF
    Britain has been a global leader in reducing emissions, but little progress has been made on heat, which accounts for almost one-third of UK emissions and the largest single share is domestic heat, which is responsible for 17% of the national total. Given the UK’s 2050 “Net-Zero” commitment, decarbonizing heat is becoming urgent and currently one of the main pathways involves its electrification. Here, we present a spatially explicit optimization model that investigates the implications of electrifying domestic heat on the operation of the power sector. Using hourly historical gas demand data, we conclude that the domestic peak heat demand is almost 50% lower than widely cited values. A 100% electrification pathway can be achieved with only a 1.3-fold increase in generation capacity compared to a power-only decarbonization scenario, but only by leveraging the role of thermal energy storage technologies without which a further 40% increase would be needed

    A multi-period game-theoretic approach to market fairness in oligopolies

    Full text link
    Contemporary process industries are constantly confronted with volatile market conditions that jeopardise their financial sustainability. While mature markets transition to oligopoly structures, the supply chain operation should adapt to a more customer-centric focus. Key issues related to the modelling and impact of the related contractual agreements between firms and customers remain largely unexplored. In the present work, we examine the problem of fair customer allocation in oligopolies under different contractual agreements within a multi-period setting. We consider an ensemble of contract types that vary in terms of pricing mechanisms and duration. The role of fairness is examined following the social welfare and Nash bargaining scheme. In the latter case, the overall problem is formulated as an MINLP. For its efficient solution we employ a piecewise linearisation strategy based on special-ordered sets. The impact of the different fairness schemes on the optimal customer allocation is evaluated via two case studies from the industrial gases market

    Investigating the Trade-Off between Design and Operational Flexibility in Continuous Manufacturing of Pharmaceutical Tablets: A Case Study of the Fluid Bed Dryer

    Get PDF
    Market globalisation, shortened patent lifetimes and the ongoing shift towards personalised medicines exert unprecedented pressure on the pharmaceutical industry. In the push for continuous pharmaceutical manufacturing, processes need to be shown to be agile and robust enough to handle variations with respect to product demands and operating conditions. In this paper we examine the use of operational envelopes to study the trade-off between the design and operational flexibility of the fluid bed dryer at the heart of a tablet manufacturing process. The operating flexibility of this unit is key to the flexibility of the full process and its supply chain. The methodology shows that for the fluid bed dryer case study there is significant effect on flexibility of the process at different drying times with the optimal obtained at 700 s. The flexibility is not affected by the change in volumetric flowrate, but only by the change in temperature. Here the method used a black box model to show how it could be done without access to the full model equation set, as this often needs to be the case in commercial settings

    Multi Set-Point Explicit Model Predictive Control for Nonlinear Process Systems

    No full text
    In this article, we introduce a novel framework for the design of multi set-point nonlinear explicit controllers for process systems engineering problems where the set-points are treated as uncertain parameters simultaneously with the initial state of the dynamical system at each sampling instance. To this end, an algorithm for a special class of multi-parametric nonlinear programming problems with uncertain parameters on the right-hand side of the constraints and the cost coefficients of the objective function is presented. The algorithm is based on computed algebra methods for symbolic manipulation that enable an analytical solution of the optimality conditions of the underlying multi-parametric nonlinear program. A notable property of the presented algorithm is the computation of exact, in general nonconvex, critical regions that results in potentially great computational savings through a reduction in the number of convex approximate critical regions

    Traveling Salesman Problem-Based Integration of Planning, Scheduling, and Optimal Control for Continuous Processes

    No full text
    Advanced decision making in the process industries requires efficient use of information available at different decision levels. Traditionally, planning, scheduling, and optimal control problems are solved in a decoupled way, neglecting their strong interdependence. Integrated planning, scheduling and optimal control (iPSC) aims to address this issue. Formulating the iPSC, results in a large scale nonconvex mixed integer nonlinear programming problem. In the present work, we propose a new approach for the iPSC of continuous processes aiming to reduce model and computational complexity. For the planning and scheduling, a Traveling Salesman Problem-based formulation is employed, where the planning periods are modeled in discrete time while the scheduling within each week is in continuous time. Another feature of the proposed iPSC framework is that backlog, idle production time, and multiple customers are introduced. The resulting problem is a mixed integer programming problem and different solution strategies are employed and analyzed

    Investigating the Trade-Off between Design and Operational Flexibility in Continuous Manufacturing of Pharmaceutical Tablets: A Case Study of the Fluid Bed Dryer

    No full text
    Market globalisation, shortened patent lifetimes and the ongoing shift towards personalised medicines exert unprecedented pressure on the pharmaceutical industry. In the push for continuous pharmaceutical manufacturing, processes need to be shown to be agile and robust enough to handle variations with respect to product demands and operating conditions. In this paper we examine the use of operational envelopes to study the trade-off between the design and operational flexibility of the fluid bed dryer at the heart of a tablet manufacturing process. The operating flexibility of this unit is key to the flexibility of the full process and its supply chain. The methodology shows that for the fluid bed dryer case study there is significant effect on flexibility of the process at different drying times with the optimal obtained at 700 s. The flexibility is not affected by the change in volumetric flowrate, but only by the change in temperature. Here the method used a black box model to show how it could be done without access to the full model equation set, as this often needs to be the case in commercial settings
    corecore