3 research outputs found

    A Study of Nuclear Transcription Factor-Kappa B in Childhood Autism

    Get PDF
    BACKGROUND: Several children with autism show regression in language and social development while maintaining normal motor milestones. A clear period of normal development followed by regression and subsequent improvement with treatment, suggests a multifactorial etiology. The role of inflammation in autism is now a major area of study. Viral and bacterial infections, hypoxia, or medication could affect both foetus and infant. These stressors could upregulate transcription factors like nuclear factor kappa B (NF-κB), a master switch for many genes including some implicated in autism like tumor necrosis factor (TNF). On this hypothesis, it was proposed to determine NF-κB in children with autism. METHODS: Peripheral blood samples of 67 children with autism and 29 control children were evaluated for NF-κB using electrophoretic mobility shift assay (EMSA). A phosphor imaging technique was used to quantify values. The fold increase over the control sample was calculated and statistical analysis was carried out using SPSS 15. RESULTS: We have noted significant increase in NF-κB DNA binding activity in peripheral blood samples of children with autism. When the fold increase of NF-κB in cases (n = 67) was compared with that of controls (n = 29), there was a significant difference (3.14 vs. 1.40, respectively; p<0.02). CONCLUSION: This finding has immense value in understanding many of the known biochemical changes reported in autism. As NF-κB is a response to stressors of several kinds and a master switch for many genes, autism may then arise at least in part from an NF-κB pathway gone awry

    Ras Puts the Brake on Doxorubicin-mediated Cell Death in p53-expressing Cells*

    No full text
    Doxorubicin is one of the most effective molecules used in the treatment of various tumors. Contradictory reports often open windows to understand the role of p53 tumor suppressor in doxorubicin-mediated cell death. In this report, we provide evidences that doxorubicin induced more cell death in p53-negative tumor cells. Several cells, having p53 basal expression, showed increase in p53 DNA binding upon doxorubicin treatment. Doxorubicin induced cell death in p53-positive cells through expression of p53-dependent genes and activation of caspases and caspase-mediated cleavage of cellular proteins. Surprisingly, in p53-negative cells, doxorubicin-mediated cell death was more aggressive (faster and intense). Doxorubicin increased the amount of Fas ligand (FasL) by enhancing activator protein (AP) 1 DNA binding in both p53-positive and p53-negative cells, but the basal expression of Fas was higher in p53-negative cells. Anti-FasL antibody considerably protected doxorubicin-mediated cell death in both types of cells. Activation of caspases was faster in p53-negative cells upon doxorubicin treatment. In contrast, the basal expression of Ras oncoprotein was higher in p53-positive cells, which might increase the basal expression of Fas in these cells. Overexpression of Ras decreased the amount of Fas in p53-negative cells, thereby decreasing doxorubicin-mediated aggressive cell death. Overall, this study will help to understand the much studied chemotherapeutic drug, doxorubicin-mediated cell signaling cascade, that leads to cell death in p53-positive and -negative cells. High basal expression of Fas might be an important determinant in doxorubicin-mediated cell death in p53-negative cells
    corecore