1,718 research outputs found

    On multigraded generalizations of Kirillov-Reshetikhin modules

    Full text link
    We study the category of Z^l-graded modules with finite-dimensional graded pieces for certain Z+^l-graded Lie algebras. We also consider certain Serre subcategories with finitely many isomorphism classes of simple objects. We construct projective resolutions for the simple modules in these categories and compute the Ext groups between simple modules. We show that the projective covers of the simple modules in these Serre subcategories can be regarded as multigraded generalizations of Kirillov-Reshetikhin modules and give a recursive formula for computing their graded characters

    Extensions and block decompositions for finite-dimensional representations of equivariant map algebras

    Full text link
    Suppose a finite group acts on a scheme XX and a finite-dimensional Lie algebra g\mathfrak{g}. The associated equivariant map algebra is the Lie algebra of equivariant regular maps from XX to g\mathfrak{g}. The irreducible finite-dimensional representations of these algebras were classified in previous work with P. Senesi, where it was shown that they are all tensor products of evaluation representations and one-dimensional representations. In the current paper, we describe the extensions between irreducible finite-dimensional representations of an equivariant map algebra in the case that XX is an affine scheme of finite type and g\mathfrak{g} is reductive. This allows us to also describe explicitly the blocks of the category of finite-dimensional representations in terms of spectral characters, whose definition we extend to this general setting. Applying our results to the case of generalized current algebras (the case where the group acting is trivial), we recover known results but with very different proofs. For (twisted) loop algebras, we recover known results on block decompositions (again with very different proofs) and new explicit formulas for extensions. Finally, specializing our results to the case of (twisted) multiloop algebras and generalized Onsager algebras yields previously unknown results on both extensions and block decompositions.Comment: 41 pages; v2: minor corrections, formatting changed to match published versio

    Macdonald Polynomials and level two Demazure modules for affine sln+1\mathfrak{sl}_{n+1}

    Get PDF
    We define a family of symmetric polynomials Gν,λ(z1,⋯ ,zn+1,q)G_{\nu,\lambda}(z_1,\cdots, z_{n+1},q) indexed by a pair of dominant integral weights. The polynomial Gν,0(z,q)G_{\nu,0}(z,q) is the specialized Macdonald polynomial and we prove that G0,λ(z,q)G_{0,\lambda}(z,q) is the graded character of a level two Demazure module associated to the affine Lie algebra sl^n+1\widehat{\mathfrak{sl}}_{n+1}. Under suitable conditions on (ν,λ)(\nu,\lambda) (which includes the case when ν=0\nu=0 or λ=0\lambda=0) we prove that Gν,λ(z,q)G_{\nu,\lambda}(z,q) is Schur positive and give explicit formulae for them in terms of Macdonald polynomials

    A Generalized Q-operator for U_q(\hat(sl_2)) Vertex Models

    Full text link
    In this paper, we construct a Q-operator as a trace of a representation of the universal R-matrix of Uq(sl^2)U_q(\hat{sl}_2) over an infinite-dimensional auxiliary space. This auxiliary space is a four-parameter generalization of the q-oscillator representations used previously. We derive generalized T-Q relations in which 3 of these parameters shift. After a suitable restriction of parameters, we give an explicit expression for the Q-operator of the 6-vertex model and show the connection with Baxter's expression for the central block of his corresponding operator.Comment: 22 pages, Latex2e. This replacement is a revised version that includes a simple explicit expression for the Q matrix for the 6-vertex mode

    Dorey's Rule and the q-Characters of Simply-Laced Quantum Affine Algebras

    Get PDF
    Let Uq(ghat) be the quantum affine algebra associated to a simply-laced simple Lie algebra g. We examine the relationship between Dorey's rule, which is a geometrical statement about Coxeter orbits of g-weights, and the structure of q-characters of fundamental representations V_{i,a} of Uq(ghat). In particular, we prove, without recourse to the ADE classification, that the rule provides a necessary and sufficient condition for the monomial 1 to appear in the q-character of a three-fold tensor product V_{i,a} x V_{j,b} x V_{k,c}.Comment: 30 pages, latex; v2, to appear in Communications in Mathematical Physic

    Universal Baxterization for Z\mathbb{Z}-graded Hopf algebras

    Full text link
    We present a method for Baxterizing solutions of the constant Yang-Baxter equation associated with Z\mathbb{Z}-graded Hopf algebras. To demonstrate the approach, we provide examples for the Taft algebras and the quantum group Uq[sl(2)]U_q[sl(2)].Comment: 8 page

    A family of tridiagonal pairs and related symmetric functions

    Full text link
    A family of tridiagonal pairs which appear in the context of quantum integrable systems is studied in details. The corresponding eigenvalue sequences, eigenspaces and the block tridiagonal structure of their matrix realizations with respect the dual eigenbasis are described. The overlap functions between the two dual basis are shown to satisfy a coupled system of recurrence relations and a set of discrete second-order q−q-difference equations which generalize the ones associated with the Askey-Wilson orthogonal polynomials with a discrete argument. Normalizing the fundamental solution to unity, the hierarchy of solutions are rational functions of one discrete argument, explicitly derived in some simplest examples. The weight function which ensures the orthogonality of the system of rational functions defined on a discrete real support is given.Comment: 17 pages; LaTeX file with amssymb. v2: few minor changes, to appear in J.Phys.A; v3: Minor misprints, eq. (48) and orthogonality condition corrected compared to published versio

    R-matrices of three-state Hamiltonians solvable by Coordinate Bethe Ansatz

    Full text link
    We review some of the strategies that can be implemented to infer an RR-matrix from the knowledge of its Hamiltonian. We apply them to the classification achieved in arXiv:1306.6303, on three state U(1)U(1)-invariant Hamiltonians solvable by CBA, focusing on models for which the SS-matrix is not trivial. For the 19-vertex solutions, we recover the RR-matrices of the well-known Zamolodchikov--Fateev and Izergin--Korepin models. We point out that the generalized Bariev Hamiltonian is related to both main and special branches studied by Martins in arXiv:1303.4010, that we prove to generate the same Hamiltonian. The 19-vertex SpR model still resists to the analysis, although we are able to state some no-go theorems on its RR-matrix. For 17-vertex Hamiltonians, we produce a new RR-matrix.Comment: 22 page

    Difference L operators related to q-characters

    Full text link
    We introduce a factorized difference operator L(u) annihilated by the Frenkel-Reshetikhin screening operator for the quantum affine algebra U_q(C^{(1)}_n). We identify the coefficients of L(u) with the fundamental q-characters, and establish a number of formulas for their higher analogues. They include Jacobi-Trudi and Weyl type formulas, canceling tableau sums, Casorati determinant solution to the T-system, and so forth. Analogous operators for the orthogonal series U_q(B^{(1)}_n) and U_q(D^{(1)}_n) are also presented.Comment: 25 pages, LaTeX2e, no figur

    Lorentz invariant and supersymmetric interpretation of noncommutative quantum field theory

    Full text link
    In this paper, using a Hopf-algebraic method, we construct deformed Poincar\'e SUSY algebra in terms of twisted (Hopf) algebra. By adapting this twist deformed super-Poincar\'e algrebra as our fundamental symmetry, we can see the consistency between the algebra and non(anti)commutative relation among (super)coordinates and interpret that symmetry of non(anti)commutative QFT is in fact twisted one. The key point is validity of our new twist element that guarantees non(anti)commutativity of space. It is checked in this paper for N=1 case. We also comment on the possibility of noncommutative central charge coordinate. Finally, because our twist operation does not break the original algebra, we can claim that (twisted) SUSY is not broken in contrast to the string inspired N=1/2\mathcal{N}=1/2 SUSY in N=1 non(anti)commutative superspace.Comment: 15 pages, LaTeX. v3:One section added, typos corrected, to appear in Int. J. Mod. Phys.
    • …
    corecore