6 research outputs found
Identification and functional characterization of ten AP2/ERF genes in potato
International audienceEthylene-responsive element-binding factors (ERF) constitute one of the largest transcription factor families in plants. In this study, we describe the cloning and the characterization of ten cDNAs encoding ERF factors from potato. The alignment of their AP2/ERF (Apetala2/ethylene-responsive factor) domain led to the identification of six StERFs (Solanum tuberosum ERFs) and four StDREBs (dehydration responsive element binding). The phylogeny and the sequence characterization allowed the classification of these StERFs into five ERF families. Expression analysis by semi-quantitative RT-PCR of these genes revealed that most of them are induced by hormone treatment such as abscisic acid, ethephon, jasmonic acid and salicylic acid. However, salt stress induced the expression of all StDREB but only three StERF genes. These results suggest that these transcription factors are involved in salt stress response. The StDREB1 and StDREB2 genes showed strong increase in expression in response to drought stress. In an attempt to improve drought tolerance in potato, we overexpressed StDREB1 and StDREB2 in transgenic potato plants (S. tuberosum L. Group Tuberosum) cv. Belle de Fontenay (BF15) and Spunta, respectively. The level of drought tolerance of these transgenic lines was significantly greater than that of wild-type control plants as measured by relative water content H2O2 content, free proline and total soluble sugars. The results suggest that the StDREB1 and StDREB2 as AP2/ERF transcription factors may play dual roles in response to drought stress in potato
Improved growth and tuber quality of transgenic potato plants overexpressing either NHX antiporter, CLC chloride channel, or both
International audienceThe nutritional enhancement of potato plants (Solanum tuberosum L.,) is highly critical. As it is considered a worldwide basic vegetarian nutrition to maintain health. S. tuberosum is one of the foremost staples and the world's fourth-largest food crop. In advance, its need is increasing because of its high-industrial value and population blast. To improve both potato growth and behavior under harsh environmental conditions, we produced transgenic potato plants overexpressing either VvNHX (a sodium proton antiporter from Vitis vinifera), VvCLC (a chloride channel from Vitis vinifera), or both. Control and transgenic plants were grown in greenhouse and field under non-stressed conditions for 85 days in order to characterize their phenotype and evaluate their agronomical performance. To this aim, the evaluation of plant growth parameters, tuber yields and characteristics (calibers, eye number and color), the chemical composition of tubers, was conducted and compared between the different lines. The obtained results showed that transgenic plants displayed an improved growth (flowering precocity, gain of vigor and better vegetative growth) along with enhanced tuber yields and quality (increased protein and starch contents). Our findings provide then insight into the role played by the VvNHX antiport and the VvCLC channel and a greater understanding of the effect of their overexpression in potato plants
Spectrum of Genetic Diseases in Tunisia: Current Situation and Main Milestones Achieved
Genetic diseases in Tunisia are a real public health problem given their chronicity and the lack of knowledge concerning their prevalence and etiology, and the high rates of consanguinity. Hence, we performed systematic reviews of the literature in order to provide a more recent spectrum of these disorders and to expose the challenges that still exist to tackle these kinds of diseases. A manual textual data mining was conducted using MeSH and PubMed databases. Collected data were classified according to the CIM-10 classification and the transmission mode. The spectrum of these diseases is estimated to be 589 entities. This suggests remarkable progress through the development of biomedical health research activities and building capacities. Sixty percent of the reported disorders are autosomal recessive, which could be explained by the high prevalence of endogamous mating. Congenital malformations (29.54%) are the major disease group, followed by metabolic diseases (22%). Sixty percent of the genetic diseases have a known molecular etiology. We also reported additional cases of comorbidity that seem to be a common phenomenon in our population. We also noticed that epidemiological data are scarce. Newborn and carrier screening was only limited to pilot projects for a few genetic diseases. Collected data are being integrated into a database under construction that will be a valuable decision-making tool. This study provides the current situation of genetic diseases in Tunisia and highlights their particularities. Early detection of the disease is important to initiate critical intervention and to reduce morbidity and mortality