9 research outputs found

    Role of RelA and SpoT in Burkholderia pseudomallei survival, biofilm formation and ceftazidime tolerance during nutritional stress

    Get PDF
    This is the author accepted manuscript.Burkholderia pseudomallei a saprophyte found in soil and stagnant water is the causative agent of human melioidosis, an often cause fatal disease. B. pseudomallei is intrinsically resistant to many antibiotics. The stringent response is a global bacterial adaptation process in response to nutritional limitation and is mediated by the alarmone (p)ppGpp, which is produced by two proteins, RelA and SpoT. In order to test whether the stringent response is involved in ceftazidime tolerance, biofilm formation, and bacterial survival in the soil microcosm, B. pseudomallei strain K96243 and its isogenic ΔrelA and ΔrelAΔspoT mutants were grown in rich and nutrient-limited media. In nutrient-limiting conditions, both the wild type and mutants were found to be up to 64-times more tolerant to ceftazidime than when grown in rich culture conditions. Moreover, the biofilm formation of all bacterial isolates tested were significantly higher under nutrient-limiting conditions than under nutrient-rich conditions. The ΔrelAΔspoT mutant produced less biofilm than its wild type or ΔrelA mutant under nutrient-limiting conditions. The survival of the ΔrelAΔspoT double mutant cultured in 1% moisture content soil was significantly decreased compared to the wild type and the ΔrelA mutant. Therefore, the RelA/SpoT protein family might represent a promising target for the development of novel antimicrobial agents to combat B. pseudomallei.This work was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant no. PHD/0351/2551 to CA and ST), the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Health Cluster (SHeP-GMS), and Khon Kaen University

    D-LL-31 enhances biofilm-eradicating effect of currently used antibiotics for chronic rhinosinusitis and its immunomodulatory activity on human lung epithelial cells

    No full text
    Chronic rhinosinusitis (CRS) is a chronic disease that involves long-term inflammation of the nasal cavity and paranasal sinuses. Bacterial biofilms present on the sinus mucosa of certain patients reportedly exhibit resistance against traditional antibiotics, as evidenced by relapse, resulting in severe disease. The aim of this study was to determine the killing activity of human cathelicidin antimicrobial peptides (LL-37, LL-31) and their D-enantiomers (DLL- 37, D-LL-31), alone and in combination with conventional antibiotics (amoxicillin; AMX and tobramycin; TOB), against bacteria grown as biofilm, and to investigate the biological activities of the peptides on human lung epithelial cells. D-LL-31 was the most effective peptide against bacteria under biofilm-stimulating conditions based on IC50 values. The synergistic effect of D-LL-31 with AMX and TOB decreased the IC50 values of antibiotics by 16- fold and could eliminate the biofilm matrix in all tested bacterial strains. D-LL-31 did not cause cytotoxic effects in A549 cells at 25 μM after 24 h of incubation. Moreover, a cytokine array indicated that there was no significant induction of the cytokines involving in immunopathogenesis of CRS in the presence of D-LL-31. However, a tissue-remodeling-associated protein was observed that may prevent the progression of nasal polyposis in CRS patients. Therefore, a combination of D-LL-31 with AMX or TOB may improve the efficacy of currently used antibiotics to kill biofilm-embedded bacteria and eliminate the biofilm matrix. This combination might be clinically applicable for treatment of patients with biofilm-associated CRS

    The transport of group 2 capsular polysaccharides across the peripiasmic space in Escherichia coli: roles for the KpsE and KpsD proteins

    No full text
    The cell surface expression of group 2 capsular polysaccharides involves the translocation of the polysaccharide from its site of synthesis on the inner face of the cytoplasmic membrane onto the cell surface. The transport process is independent of the repeat structure of the polysaccharide, and translocation across the periplasm requires the cytoplasmic membrane-anchored protein KpsE and the periplasmic protein KpsD. In this paper we establish the topology of the KpsE protein and demonstrate that the C terminus interacts with the periplasmic face of the cytoplasmic membrane. By chemical cross-linking we show that KpsE is likely to exist as a dimer and that dimerization is independent of the other Kps proteins or the synthesis of capsular polysaccharide. No interaction between KpsD and KpsE could be demonstrated by chemical cross-linking, although in the presence of both KpsE and Lpp, KpsD could be cross-linked to a 7-kDa protein of unknown identity. In addition, we demonstrate that KpsD is present not only within the periplasm but is also in both the cytoplasmic and outer membrane fractions and that the correct membrane association of KpsD was dependent on KpsE, Lpp, and the secreted polysaccharide molecule. Both KpsD and KpsE showed increased proteinase K sensitivity in the different mutant backgrounds, reflecting conformational changes in the KpsD and KpsE proteins as a result of the disruption of the transport process. Collectively the data suggest that the trans-periplasmic export involves KpsD acting as the link between the cytoplasmic membrane transporter and the outer membrane with KpsE acting to facilitate this transport process
    corecore