5 research outputs found

    Photovoltaic grid-forming control strategy investigation using hardware-in-the-loop experiments

    Full text link
    The frequency stability of a power system is of paramount importance, as a fast frequency swings in the system can lead to oscillatory instability, and thereby blackouts. A grid-connected microgrid, that can operate in the islanded mode can also possess such deteriorating effect due to the higher share of converter-based sources. In this paper, a coordinated frequency control within a distribution network is discussed, with a higher share of Photovoltaics (PV). The main objective of this paper is to test the grid-forming capabilities of PVs, without the requirement of an energy storage in the network. The tests were carried out with the help of the Typhoon Hardware-in-the-loop (HIL) platform using a real Cypriot network feeder. The real-time results confirm the efficacy of the PV as a grid-forming inverter, provided it has sufficient input (irradiance) to provide for the loads within the system of interest. The grid-forming PV also possesses the capability of reconnection with the utility grid through a synchronizer switch that requires minimal communication, makes the overall control independent of any other power source, subject to certain irradiance and loading conditions.Comment: 13th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2022

    Stability Studies for Photovoltaic Integration using Power Hardware-in-the-Loop Experiments

    Full text link
    The electrical power network is gradually migrating from a centralized generation approach to a decentralized generation with high shares of renewable energy sources (RES). However, power systems with low shares of synchronous generation and consequently low total system inertia, are vulnerable to power imbalances. Such systems can experience frequency stability problems, such as high frequency excursions and higher rates of change of frequency even under small disturbances. This phenomenon is intensified when the grid under investigation has low or no interconnections (islanded) and thus the challenge for stable operation becomes more significant for the operators. This work focuses on how the frequency stability is affected when a photovoltaic (PV) inverter is integrated into a real non-interconnected distribution grid in Cyprus. In order to capture the realistic interactions of this integration, stability experiments in a hardware-in-the-loop (HIL) environment are performed with the aim to provide insightful results for the grid operator.Comment: The 12th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2020

    Enabling Conditions for the Deployment of Integrated Local Energy Communities in Europe

    No full text
    The main goal of eNeuron H2020 project (Nov 2020-Oct. 2024, ID: 957779) is to develop innovative tools for the optimal design and operation of local energy communities, integrating distributed energy resources and multiple energy carriers at different scales. This paper presents a review study of the enabling conditions for the deployment of integrated local energy communities (ILECs) in Europe, performed within the project. The enabling conditions are addressed by defining the key actors and their interests in the implementation of an energy community at local level and through a detailed mapping of the enabling and emerging energy and information and communication technologies at both household and community levels. Special focus is also on mapping of the demand-side flexibility technologies to understand the benefits of local flexibility and impacts on the larger systems. In such analysis, the key issues for implementation and adaptation of this new energy paradigm are investigated through covering technological, socio-economic, environmental, and regulatory aspects

    A Comprehensive Review of the Design and Operation Optimization of Energy Hubs and Their Interaction with the Markets and External Networks

    Get PDF
    The European Union’s vision for energy transition not only foresees decarbonization of the electricity sector, but also requires commitment across different sectors such as gas, heating, and cooling through an integrated approach. It also sets local energy communities at the center of the energy transition as a bottom-up approach to achieve these ambitious decarbonization goals. The energy hub is seen as a promising conceptual model to foster the optimization of multi-carrier energy systems and cross-sectoral interaction. Especially in the context of local energy communities, the energy hub concept can enable the optimal design, management, and control of future integrated and digitalized networks where multiple energy carriers operate seamlessly and in complementarity with each other. In that sense, the optimal design and operation of energy hubs are of critical importance, especially under the effect of multiple objectives taking on board not only technical, but also other aspects that would enable the sustainability of local energy communities, such as economic and environmental. This paper aims to provide an in-depth review of the literature surrounding the existing state-of-the-art approaches that are related to the design and operation optimization of energy hubs by also exploring their interaction with the external network and multiple markets. As the planning and operation of an energy hub is a multifaceted research topic, this paper covers issues such as the different optimization methods, optimization problems formulation including objective functions and constraints, and the hubs’ optimal market participation, including flexibility mechanisms. By systematizing the existing literature, this paper highlights any limitations of the approaches so far and identifies the need for further research and enhancement of the existing approaches

    Particulate monitoring, modeling, and management: natural sources, long-range transport, and emission control options: a case study of Cyprus

    Get PDF
    The LIFE+ Project PM3: Particulate Monitoring, Modeling, Management is coordinated by the Department of Labour Inspection in Cyprus and funded in part by LIFE+ Environment Policy & Governance. The project aims at the analysis of dust emissions, transport, and control options for Cyprus, as well as at the identification of “natural” contributions (Directive 2008/50/EC). The ultimate objective is to provide inputs for the design of a dust management plan to improve compliance to EC Directives and minimise impacts to human health and environment. This paper presents a short analysis of historical monitoring data and their patterns as well as a description of a dynamic dust entrainment model. The pyrogenic PM10 emissions combined with the wind driven emissions, are subject to a two phase non-linear multi-criteria emission control optimization procedure. The resulting emission scenarios with an hourly resolution provide input to the Comprehensive Air quality Model with extensions (CAMx) 3D fate and transport model, implemented for the 4,800 km master domain and embedded subdomains (270 km around the island of Cyprus and embedded smaller city domains of up to 30 km down to street canyon modeling). The models test the feasibility of candidate emission control solutions over a range of weather conditions. Model generated patterns of local emissions and long-range transport are discussed compared with the monitoring data, remote sensing (MODIS derived AOT), and the chemical analysis of dust samples
    corecore