19 research outputs found

    Sex and rhythms in sandflies and mosquitoes : An appreciation of the work of Alexandre Afranio Peixoto (1963-2013).

    Get PDF
    I will briefly discuss the work of Alexandre A. Peixoto on sandflies and mosquitoes, focusing initially on his contributions to the population biology and phylogenetics of Brazilian populations of these important hematophagous insects. I shall also review some of his work on the underlying molecular clocks that mediate rhythmic behaviour and physiology in these species

    Staring at the Clock Face in Drosophila.

    Full text link
    Liang et al. (2017) demonstrate how neuropeptides from two groups of clock cells appear to be responsible for the fly's circadian neurons becoming active at different times of day. By delaying the activity of their clock cell targets, they give rise to morning and evening behavior

    Validation of candidate therapeutic targets for Huntington's disease in Drosophila.

    Full text link
    Validation of candidate therapeutic targets for Huntington's disease in Drosophila

    Identification and functional analysis of early gene expression induced by circadian light-resetting in Drosophila

    Get PDF
    BACKGROUND: The environmental light-dark cycle is the dominant cue that maintains 24-h biological rhythms in multicellular organisms. In Drosophila, light entrainment is mediated by the photosensitive protein CRYPTOCHROME, but the role and extent of transcription regulation in light resetting of the dipteran clock is yet unknown. Given the broad transcriptional changes in response to light previously identified in mammals, we have sought to analyse light-induced global transcriptional changes in the fly's head by using Affymetrix microarrays. Flies were subjected to a 30-min light pulse during the early night (3 h after lights-off), a stimulus which causes a substantial phase delay of the circadian rhythm. We then analysed changes in gene expression 1 h after the light stimulus. RESULTS: We identified 200 genes whose transcripts were significantly altered in response to the light pulse at a false discovery rate cut-off of 10 %. Analysis of these genes and their biological functions suggests the involvement of at least six biological processes in light-induced delay phase shifts of rhythmic activities. These processes include signalling, ion channel transport, receptor activity, synaptic organisation, signal transduction, and chromatin remodelling. Using RNAi, the expression of 22 genes was downregulated in the clock neurons, leading to significant effects on circadian output. For example, while continuous light normally causes arrhythmicity in wild-type flies, the knockdown of Kr-h1, Nipped-A, Thor, nrv1, Nf1, CG11155 (ionotropic glutamate receptor), and Fmr1 resulted in flies that were rhythmic, suggesting a disruption in the light input pathway to the clock. CONCLUSIONS: Our analysis provides a first insight into the early responsive genes that are activated by light and their contribution to light resetting of the Drosophila clock. The analysis suggests multiple domains and pathways that might be associated with light entrainment, including a mechanism that was represented by a light-activated set of chromatin remodelling genes

    An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway

    No full text
    Many higher animals have evolved the ability to use the Earth's magnetic field, particularly for orientation. Drosophila melanogaster also respond to electromagnetic fields (EMFs), although the reported effects are quite modest. Here we report that negative geotaxis in flies, scored as climbing, is disrupted by a static EMF, and this is mediated by cryptochrome (CRY), the blue-light circadian photoreceptor. CRYs may sense EMFs via formation of radical pairs of electrons requiring photoactivation of flavin adenine dinucleotide (FAD) bound near a triad of Trp residues, but mutation of the terminal Trp in the triad maintains EMF responsiveness in climbing. In contrast, deletion of the CRY C terminus disrupts EMF responses, indicating that it plays an important signalling role. CRY expression in a subset of clock neurons, or the photoreceptors, or the antennae, is sufficient to mediate negative geotaxis and EMF sensitivity. Climbing therefore provides a robust and reliable phenotype for studying EMF responses in Drosophila

    Aminergic Signaling Controls Ovarian Dormancy in Drosophila.

    Get PDF
    In response to adverse environmental conditions many organisms from nematodes to mammals deploy a dormancy strategy, causing states of developmental or reproductive arrest that enhance somatic maintenance and survival ability at the expense of growth or reproduction. Dormancy regulation has been studied in C. elegans and in several insects, but how neurosensory mechanisms act to relay environmental cues to the endocrine system in order to induce dormancy remains unclear. Here we examine this fundamental question by genetically manipulating aminergic neurotransmitter signaling in Drosophila melanogaster. We find that both serotonin and dopamine enhance adult ovarian dormancy, while the downregulation of their respective signaling pathways in endocrine cells or tissues (insulin producing cells, fat body, corpus allatum) reduces dormancy. In contrast, octopamine signaling antagonizes dormancy. Our findings enhance our understanding of the ability of organisms to cope with unfavorable environments and illuminate some of the relevant signaling pathways

    Interspecific studies of circadian genes period and timeless in Drosophila.

    No full text
    The level of rescue of clock function in genetically arrhythmic Drosophila melanogaster hosts using interspecific clock gene transformation was used to study the putative intermolecular coevolution between interacting clock proteins. Among them PER and TIM are the two important negative regulators of the circadian clock feedback loop. We transformed either the D. pseudoobscura per or tim transgenes into the corresponding arrhythmic D. melanogaster mutant (per01 or tim01) and observed >50% rhythmicity but the period of activity rhythm was either longer (D. pseudoobscura-per) or shorter than 24 h (D. pseudoobscura-tim) compared to controls. By introducing both transgenes simultaneously into double mutants, we observed that the period of the activity rhythm was rescued by the pair of hemizygous transgenes (~24 h). These flies also showed a more optimal level of temperature compensation for the period. Under LD 12:12 these flies have a D. pseudoobscura like activity profile with the absence of morning anticipation as well as a very prominent earlier evening peak of activity rhythm. These observation are consistent with the view that TIM and PER form a heterospecific coevolved module at least for the circadian period of activity rhythms. However the strength of rhythmicity was reduced by having both transgenes present, so while evidence for a coevolution between PER and TIM is observed for some characters it is not for others

    Is diapause an ancient adaptation in Drosophila?

    No full text
    D. melanogaster enters a state of reproductive arrest when exposed to low temperatures (12°C) and shorter photoperiods. A number of studies have suggested that diapause has recently evolved in European D. melanogaster populations, that it is not present in the sibling species D. simulans, that it is non-photoperiodic in American D. melanogaster populations, and that it spontaneously terminates after 6-8weeks. We have studied the overwintering phenotype under different conditions and observe that American, European and, surprisingly, African D. melanogaster populations can show photoperiodic diapause, as can European, but not African D. simulans. Surprisingly other Drosophila species from pan-tropical regions can also show significant levels of photoperiodic diapause. We observe that spontaneous termination of diapause after a few weeks can be largely avoided with a more realistic winter simulation for D. melanogaster, but not D. simulans. Examining metabolite accumulation during diapause reveals that the shallow diapause of D. melanogaster has similar features to that of other more robustly-diapausing species. Our results suggest that diapause may be an ancient character that emerged in the tropics to resist unfavourable seasonal conditions and which has been enhanced during D. melanogaster's colonisation of temperate regions. Our results also highlight how different methodologies to quantify diapause can lead to apparently conflicting results that we believe can now largely be resolved

    Molecular polymorphism, differentiation and introgression in the period gene between Lutzomyia intermedia and Lutzomyia whitmani.

    Full text link
    Background:Lutzomyia intermedia and Lutzomyia whitmani (Diptera: Psychodidae) are important and very closely related vector species of cutaneous leishmaniasis in Brazil, which are distinguishable by a few morphological differences. There is evidence of mitochondrial introgression between the two species but it is not clear whether gene flow also occurs in nuclear genes. Results:We analyzed the molecular variation within the clock gene period (per) of these two species in five different localities in Eastern Brazil. AMOVA and Fst estimates showed no evidence for geographical differentiation within species. On the other hand, the values were highly significant for both analyses between species. The two species show no fixed differences and a higher number of shared polymorphisms compared to exclusive mutations. In addition, some haplotypes that are "typical" of one species were found in some individuals of the other species suggesting either the persistence of old polymorphisms or the occurrence of introgression. Two tests of gene flow, one based on linkage disequilibrium and a MCMC analysis based on coalescence, suggest that the two species might be exchanging alleles at the per locus. Conclusion:Introgression might be occurring between L. intermedia and L. whitmani in period, a gene controlling behavioral rhythms in Drosophila. This result raises the question of whether similar phenomena are occurring at other loci controlling important aspects of behavior and vectorial capacity

    Disruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila

    Full text link
    The Drosophila melanogaster circadian clock is generated by interlocked feedback loops, and null mutations in core genes such as period and timeless generate behavioral arrhythmicity in constant darkness. In light–dark cycles, the elevation in locomotor activity that usually anticipates the light on or off signals is severely compromised in these mutants. Light transduction pathways mediated by the rhodopsins and the dedicated circadian blue light photoreceptor cryptochrome are also critical in providing the circadian clock with entraining light signals from the environment. The cryb mutation reduces the light sensitivity of the fly’s clock, yet locomotor activity rhythms in constant darkness or light–dark cycles are relatively normal, because the rhodopsins compensate for the lack of cryptochrome function. Remarkably, when we combined a period-null mutation with cryb, circadian rhythmicity in locomotor behavior in light–dark cycles, as measured by a number of different criteria, was restored. This effect was significantly reduced in timeless-null mutant backgrounds. Circadian rhythmicity in constant darkness was not restored, and TIM protein did not exhibit oscillations in level or localize to the nuclei of brain neurons known to be essential for circadian locomotor activity. Therefore, we have uncovered residual rhythmicity in the absence of period gene function that may be mediated by a previously undescribed period-independent role for timeless in the Drosophila circadian pacemaker. Although we do not yet have a molecular correlate for these apparently iconoclastic observations, we provide a systems explanation for these results based on differential sensitivities of subsets of circadian pacemaker neurons to light
    corecore