29 research outputs found

    An integrative investigation of sensory organ development and orientation behavior throughout the larval phase of a coral reef fish

    Get PDF
    The dispersal of marine larvae determines the level of connectivity among populations, influences population dynamics, and affects evolutionary processes. Patterns of dispersal are influenced by both ocean currents and larval behavior, yet the role of behavior remains poorly understood. Here we report the first integrated study of the ontogeny of multiple sensory systems and orientation behavior throughout the larval phase of a coral reef fish—the neon goby, Elacatinus lori. We document the developmental morphology of all major sensory organs (lateral line, visual, auditory, olfactory, gustatory) together with the development of larval swimming and orientation behaviors observed in a circular arena set adrift at sea. We show that all sensory organs are present at hatch and increase in size (or number) and complexity throughout the larval phase. Further, we demonstrate that most larvae can orient as early as 2 days post-hatch, and they swim faster and straighter as they develop. We conclude that sensory organs and swimming abilities are sufficiently developed to allow E. lori larvae to orient soon after hatch, suggesting that early orientation behavior may be common among coral reef fishes. Finally, we provide a framework for testing alternative hypotheses for the orientation strategies used by fish larvae, laying a foundation for a deeper understanding of the role of behavior in shaping dispersal patterns in the sea

    Optical 3D-storage in sol-gel materials with a reading by Optical Coherence Tomography-technique

    Full text link
    We report on the recording of 3D optical memories in sol-gel materials by using a non-linear absorption effect. This effect induces a local change of the optical properties of the material which is read and quantified with a high resolution full-field Optical Coherence Tomography setup. It is the first time that this technique is used for this purpose. Data recording was performed by focused picosecond (ps) single-pulse irradiation at 1064 nm with energy densities of 10 and 33 J/cm2 per pulse.Comment: 19 pages, 7 figure

    Table_1_Combined biophysical and genetic modelling approaches reveal new insights into population connectivity of New Zealand green-lipped mussels.xlsx

    No full text
    Understanding how ocean currents affect larval transport is crucial for understanding population connectivity in sessile marine invertebrates whose primary dispersal opportunity occurs during the pelagic larval stage. This study used Lagrangian particle tracking experiments to examine population connectivity in New Zealand green-lipped mussels (Perna canaliculus) at the national scale. Predicted patterns of larval dispersal were compared to published multi-locus microsatellite data of observed population genetic structure. Estimates of oceanographic circulation correlated significantly with FST, and we conclude that hydrodynamic processes are important in driving genetic connectivity. However, no evidence was found for an oceanographic barrier to gene flow south of Cook Strait, an important feature of genetic structure observed across several marine invertebrate species. Discrepancies between genetic and biophysical data may be explained by several factors including the different timescales of connectivity described by the two methods and the impact of localised ecological conditions and corresponding adaptations in genetic structure not captured by the bipohysical model. Population genetic analyses provide empirical data on realised connectivity and Lagrangian particle tracking experiments reveal information about directionality and asymmetry of connections that often cannot be determined by molecular analyses alone, thus a multidisciplinary approach is recommended.</p
    corecore